薯条和小费 //www.xcmww.com/chipsandtips 周一,2019年3月25日08:59:59+0000 恩努斯 每小时 https://wordpress.org/?V= 4.9 切割绳索:两条通向井板微流体的路径 //www.xcmww.com/chipsandtips/2019/03/25/cutting-the-cords-two-paths-to-well-plate-microfluidics网站/ //www.xcmww.com/chipsandtips/2019/03/25/cutting the cords two path to well plate microfluidics/回复 周一,2019年3月25日08:59:59+0000 卡林顿先生,编辑助理 未分类 //www.xcmww.com/chipsandtips/?P=2286 莎拉EParker1和Peter G.香克雷斯2号,麦迪Evss1,史葛T。Rettere1,2,3 1生物科学部新利手机客户端,橡树岭国家实验室,Oak RidgeTN2布雷登中心,田纳西大学,诺克斯维尔TN3纳米相材料科学中心,为什么它有用?新利手机客户端即使是简单的微流体装置,通常也需要复杂而昂贵的泵送和阀门安装。 < Sara E. >Parker<sup>1<sup>和Peter G.Shankles<sup>2<sup>,Maddie Evans<sup>1<sup>,史葛T。retterer<sup>1,2,3</sup>><p>><sup>1</sup>biosci新利手机客户端ences division,橡树岭国家实验室,Oak Ridgetn<p><p><sup>2<sup>the bredesen center,田纳西大学,诺克斯维尔tn.<p><sup>3.<sup>The Center for Nanophase Materials Scie新利手机客户端nces.<p><strong>Why is this used?为了精确计量和控制流体流量,即使是简单的微流体装置也常常需要复杂而昂贵的泵送和阀门系统。这通常需要大量耗时的设置,有时会让这些芯片难以想象。它还代表着从一个小体积到另一个小体积的输送流体的相当直接的过程的重大偏离,不太可能被非微流体专家采用。然而,井板微流体的开发1,2提供了高吞吐能力,研究流体交换和剪切流动的简化方法,同时尽量减少设置和多个流体连接的需要。在聚苯乙烯(PS)板和聚二甲基硅氧烷(PDMS)流体学之间创建界面是创建这些混合装置的最大障碍。Khine等人。<sup>1<sup>used pressure to create a tight interface while conant等人。<sup>2<sup>attached the surfaces using glue,但是,无论是对他们的技术进行详细阐述,还是在实践中,过程中的微小变化都可能导致设备故障。Here,两种技术详细阐述了如何在井板和微流体之间建立有效的界面。从而在连接到井板底部的PDMS设备中,通过定制微通道互连各个井。然后将试剂添加到井中,通过下面的通道网络,通过静水压力或压力控制系统进入出口井<sup>3,4.<sup><p>with the use of this platform,可以将流量引入传统的井盖研究中,以便更密切地模拟各种生理条件。此外,这些定制装置与井板微流体控制系统的兼容性提供了精确和动态控制实验条件的机会,包括温度,压力,和气体环境。多孔板的使用还允许多个设备平行于同一个板粘合,在不增加控制系统复杂性的情况下增加吞吐量5。此外,井板平台的熟悉性和普遍性为实验室内的技术专业人员提供了一个熟悉的平台,并自动与已经可用于常规井板的显微镜级附件主机兼容。<p>Well plate microfluidic manufacturing has been shown with a pressure seal between微流体和孔板1,以及将两者粘合在一起<sup>2<sup>。This work builds off these ideas by detailing bonding with a liquid adhesive or chemical activation and bonding.针对井板微流体,将定制的PDMS设备连接到井板的过程在之前的<sup>5,6<sup>中仅作了模糊描述。在这里,我们提出了两种方法,即利用(3-氨基丙基)三乙氧基硅烷(ATPES)对PS井板表面进行改性,使其与等离子体处理的PDMS结合。或未固化的PDMS作为PS和PDMS表面之间的粘合剂7。虽然APTES改性在不添加额外材料的情况下提供了更强的结合力,未固化的PDMS粘合程序需要较少的压力,避免纳米级特征的任何变形。流程概述如图1所示:<p><div id=“attachment_2287”style=“width:424px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2019/03/pic.png”><img class=“wp-image-2287”src=“//www.xcmww.com/chipsandtips/files/2019/03/pic-300x128.png”alt=“”width=“414”height=“177”srcsset=“http://blogs.rsc”.org/chipsandtips/files/2019/03/pic-300x128.png 300w,//www.xcmww.com/chipsandtips/files/2019/03/pic-768x328.png 768w,//www.xcmww.com/chipsandtips/files/2019/03/pic-1024x438.png 1024w“尺寸=”(最大宽度:414px)100vw,414px“/><a><p class=“wp caption text”>Figure 1–diagram of the manufacturing process with the aptes process above and pdms glue below.<p><strong>what do i need?<strong><p><em>materials<em><p><ul><li>pdms device replica with inlets and outlets designed to align with a well plate.<li>48 well plate;平底的,非组织培养处理过的</li><li>异丙醇(IPA)<li><li>coverslip or slide large enough to cover channels.<li><li>x-acto nike.<li><li>scotch tape.<ul><p>aptes bonding only.<p><ul><li>aptes.<li><li>去离子水</li><li>hard rubber brayer.<li><li>sealed plastic container.<li><p>pdms bonding only.<p><ul><li>锥形尖端plasTIC注射器(Nichiryo 6ml注射器,带尖端).<li><li>uncurred pdms(10:1 w/w弹性体基到固化剂).<li><ul><p><em>equipment.<em><ul><li>drill press.<li>Plasma cleaner(Harrick Plasma,基本等离子清洁器PDC-32G).<li><li>Hot Plate.<li><li>Oven(75°C).<li><ul><p><strong>what do i do?<strong><p><u>井板准备(for both bonding methods)<u><p><ol><li>Prepare the well plate by drilling a hole in the center of each well corresponding to an inlet or outlet on the PDMS replica(Figure 2).<li><li>using an x-acto nike,清洁钻孔的边缘,使井板的底面光滑,并且可能已从钻孔中形成的任何唇口都已移除。<li>><ol><div id=“attachment_2289”style=“width:491px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2019/03/fig2.png”><img class=“wp-image-2289”src=“//www.xcmww.com/chipsandtips/files/2019/03/fig2-300x119.png“alt=”width=“481”height=“191”srcset=“//www.xcmww.com/chipsandtips/files/2019/03/fig2-300x119.png 300w,//www.xcmww.com/chipsandtips/files/2019/03/fig2-768x304.png 768w,//www.xcmww.com/chipsandtips/files/2019/03/fig2-1024x405.png 1024w“尺寸=”(最大宽度:481px)100vw,481px“/><a><p class=“wp caption text”>Figure 2–The Prepared PDMS device is shown in a.准备好的井板显示在B中。<P><DIV><P><span style=“text-decoration:underline”>APTES bonding procedure<span><P><EM>Well plate APTES modification<EM><P>1.clean the bottom surface of the well plate with IPA and expose to oxygen plasma on high setting for 2 minutes,使板的底面朝上(图3a).<p><p>2.in a fume hood,制备100毫升1%v/v适配水溶液,并将其倒入浅层,可再密封容器。<p><p>3.__ place the plasma treated well plate in the aptes container so that the bottom surface of the plate is completely deposited.密封容器并浸泡30分钟(图3b)<p>4.remove the plate from the aptes bath and rinse the top and bottom with water.使用压缩空气干燥井板,并将其放在50°C的热板上,以确保彻底干燥。<p><div id=“attachment_”style=“width:310px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2019/03/fig3.png”><img class=“wp-image-2290 size medium”src=“//www.xcmww.com/chipsandtips/files/2019/03/fig3-300x300.png“alt=”width=“300”height=“300”srcset=“//www.xcmww.com/chipsandtips/files/2019/03/fig3-300x300.png 300w,//www.xcmww.com/chipsandtips/files/2019/03/fig3-150x150.png 150w,//www.xcmww.com/chipsandtips/files/2019/03/fig3-768x766.png 768w,//www.xcmww.com/chipsandtips/files/2019/03/fig3-1024x1022.png 1024w“尺寸=”(最大宽度:300px)100vw,300px“/><a><p class=“wp caption text”>Figure 3–The well plate was exposed to air plasma and sequended in a water/aptes solution to modify the surface chem新利手机客户端istry and enable bonding between ps and pdms.然后将盖玻片等离子粘合到PDMS表面上。<p>><div>><p>><em>assembly=<em>><p>1.clean the to p of the PDMS replica(opposite to the channels)using scotch tape and plasma clean on high for 1 minute.<p>2.with the channeled side of the PDMS replica face face up,将复制品的入口/出口与APTES改良井板的孔对齐,并将层压在一起。在表面上滚动一个制动器,以去除任何气泡并确保均匀,均匀键在75°C下烘烤20分钟(图3c)。<p><p>3.remove the well plate with bonded device from the烤箱and use scotch tape to remove fragments from the channel exposed PDMS.用IPA清洁玻璃盖玻片,将盖玻片和孔板暴露在高氧等离子体中1分钟。将封面贴到PDMS副本上,因此,封闭通道并在75°C下烘烤20分钟。<p><p><span style=“text-decoration:underline”>Uncurred PDMS procedure<span><p>1.remove any dust from the bottom(channel exposed)side of the PDMS replica using scotch tape and clean a glass coverslip with IPA.在高设置条件下,将两者暴露于氧等离子体中1分钟,并将其粘合在一起,封闭河道。在75°C下烘烤1小时(图4a)。<p><p>2.clean the bottom surface of the prepared well plate with ipa.使用锥形针头注射器,将未固化的PDMS的小液滴放在井板的底面上,PDMS设备将在那里粘合(图4b)。<p><p>3.using scotch tape,清除盖玻利布粘合PDMS复制品顶部(与通道相反)的灰尘。将装置的入口/出口与井板的孔对齐,并将装置轻轻压到井板上(图4c)。Remove any uncured PDMS that may have leaked into the wells or inlets/outlets of the device.在75°C下烘烤1小时。<p><div id=“attachment_”style=“width:448px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2019/03/fig4.png”><img class=“wp-image-2291”src=“//www.xcmww.com/chipsandtips/files/2019/03/fig4-300x146.png”alt=“”width=“438”height=“213”srcsset=“//www.xcmww.com/chipsandtips/filES/2019/03/图4-300x146.PNG 300W//www.xcmww.com/chipsandtips/files/2019/03/fig4-768x374.png 768w,//www.xcmww.com/chipsandtips/files/2019/03/fig4-1024x499.png 1024w“尺寸=”(最大宽度:438px)100vw,438px“/><a><p class=“wp caption text”>Figure 4–The PDMS device was first bonded to a coverslip(a)and then bonded to a well plate using uncurred PDMS(b).C从俯视图和侧视图中显示完成的设备。<P><DIV><P><STRONG>Conclusion<STRONG><P><P>We present two methods for attaching PDMS microfluidic devices to polyses well plates,为井板微流体提供利用定制通道的机会。使用这些装置的分析可与井板微流体控制器一起运行,或通过向入口井添加所需试剂或介质,使用简单的移液方法运行。<strong>(图9)。<strong>while the manufacturing process is more involved than typical PDMS processing,well-plate microfluidics removes the need for complicated tubing connections by working with a single manifold controller,或利用井高产生压力的静水流。<p><p><a href=“//www.xcmww.com/chipsandtips/files/2019/03/fig5.png”><img class=“wp-image-2292 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2019/03/fig5-300x246.png”alt=“”width=“317”height=“260”srcset=“//www.xcmww.com/chipsandtips/files/2019/03/fig5-300x246.pNG 300 W,//www.xcmww.com/chipsandtips/files/2019/03/fig5-768x630.png 768w,//www.xcmww.com/chipsandtips/files/2019/03/fig5-1024x840.png 1024w“尺寸=”(最大宽度:317px)100vw,317px“/>.<a><p><p><strong>references.<strong><p><p>1 m.KhineC.伊涅斯库·萨内蒂,a.布拉茨L.P.王和L.P.李,实验室芯片,doi:10.1039/b614356c.<p>2 c.G.康纳特Ma.施瓦兹Je.比彻R.C.RudoffC.伊涅斯库·扎内蒂和J.TNevillBiotechnol.生物,,doi:10.1002/bit.23243.<p>3_____fluxion,白色PAP.2008,1–6.<p>4____2012,US00825796.<p>5____C.G.康纳特JTNevillM施瓦兹和C伊涅斯库·萨内蒂,J实验室。Autom.,2010,15,52–57.<p>6____P.J李,n.名词GhorashianTa.盖革与P.J挂,J实验室。Autom.,,doi:10.1016/j.jala.2007.07.001.<p><p>7 v.SunkaraD.K.公园,H.HwangR.ChantiwasS.a.Soper和Y.K.Cho实验室芯片2011,11,962–965.<p><p>.<p><div class=“lightsocial_container”><a class=“lightsocial_a”href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2fcutting the cords two paths to well plate microfluidics%2f&title=cutting+the+cords%3a+two+paths+to+well plate+microfluidics“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png”alt=“digg this”title=“digg”/><a><a class=“lightsocial_a”href=“http://www.reddit.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2fcutting the cords two paths to well plate microfluidics%2f&title=cutting+the+cords%3a+two+paths+to+well plate+microfluidics“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/reddit.png”alt=“reddit this”title=“reddit this”/></a>><a class=“lightsocial”href=“http://www.stumbleupon.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2f切断两条通向井板微流体的路径%2f&title=cutting+the+cords%3a+two+paths+to+well plate+microfluidics“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/stumbleupon.png”alt=“现在绊倒!”title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?T=Cutting+The+Cords%3a+Two+Paths+to+Well Plate+Microfluidics&U=http%3a%2f%2fBlogs.rsc.org%2fChipsandTips%2f2019%2f03%2f25%2f Cutting the Cords Two Paths to Well Plate Microfluidics%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/facebook.png“alt=”share on facebook“title=”share on facebook“/><a class=“lightsocial”href=“http://delicious.com/save”?title=cutting+the+cords%3a+two+paths+to+well plate+microfluidics&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2f cutting the cords two paths to well plate microfluidics%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png“alt=”bookmark this on delicious“title=”bookmark this on Delicious”/>.<a><a class=“lightsocial_a”href=“http://www.linkedin.com/shareArticle”?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2fcutting the cords two path to well plate microfluidics%2f&title=cutting+the+cords%3a+two+path+to+well plate+microfluidics&summary=&source=“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/linkedin.png”alt=“share on linkedin“title=”share on linkedin“/><a><a class=”lightsocial_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2f cutting the cords two paths to well plate microfluidics%2f“><img class=“light social_img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png”alt=“bookmark this on technorati”title=“bookmark this on technorati”/>=<a class=“light social_a”href=“http://twitter.com/home?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2f cutting the cords two paths to well plate microfluidics%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/><a class=”light social“a”href=“http://www.google.com/buzz/post?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2019%2f03%2f25%2f切断两条通向井板微流体的路径%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png“alt=”google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2019/03/25/cutting-the-cords-two-paths-to-well-plate-microfluidics/feed/ 旧电子零件的第二生命:用于微流体应用的旋转镀膜机 //www.xcmww.com/chipsandtips/2018/04/25/a-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications/ //www.xcmww.com/chipsandtips/2018/04/25/a-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications/评论 结婚,25 Apr 2018 09:56:34 +0000 卡林顿先生,编辑助理 未分类 //www.xcmww.com/chipsandtips/?P=2270 加布里埃尔·皮廷格罗1,Valerie Taly1和Claudio Nastruzzi2 1插入UMR-S1147,SNR5014;Paris Descartes University,巴黎,法国。法国国家癌症控制设备。生物技术部,费拉拉大学Ferrara意大利*电子邮件:gabriele.pitingolo@parisdescartes.fr,nas@unife.这为什么有用?众所周知,信息和通信技术的迅速扩散[…] <p>Gabriele Pitingolo<sup>1<sup>,Valerie Taly<sup>1<sup>and Claudio Nastruzzi<sup>2<sup>><p>><em>><sup>1<sup>inserm umr-s1147,SNR5014;Paris Descartes University,巴黎,法国。Equipe Labellis_e Ligue Nationale Contre le Cancer.<em>><p>><em>><sup>2.<sup>Dipartitiono di Scienze della vita e Biotecnologie,费拉拉大学Ferrara意大利语-<p><p>*email:gabriele.pitingolo@parisdescartes.fr,nas@unife.it.<p><p><span style=“color:000080”><strong>为什么这有用?<strong><span><p style=“text-align:justify”>it is well known that the rapid proliferation of information and communications technologies(ICT)has resulted in a global mount of high-tech trash(e-waste).电子垃圾的问题不仅在于电子产品的积累,因此处理成本也很高。而是存在于其各种成分中的有害物质。因此,循环利用在资源和节能领域的重要性显而易见,寻找新的,电子元件的第二寿命。<p><p style=“text-align:justify”>Spin-Coaters是广泛使用的仪器,可用于将均匀的薄膜沉积到平面基板上[1]。在微流体学中,旋转涂层用于涂覆光致抗蚀剂层(例如SU-8),或通过使用PDMS的粘合特性来粘合分离的基板。自旋涂层技术也被用于制造聚合物薄膜。PDMS膜是,例如,由于其诸多优点,被广泛应用。例如,PDMS膜可渗透,they can be used to exchange gas (in cell culture application for example) or small molecule (in filtration application) [2].此外,正如最近报道的,旋转涂层适用于制造圆形截面的微通道[3]。大多数商用旋涂机价格昂贵(2000-6000英镑),并且具有一些不需要的或多余的规格。制造/修改微流体装置不一定需要。<p><p style=“text-align:justify”>在这方面,we present here a tip to develop portable spin coaters by recycling computer fans and mobile phone wall chargers.个人电脑中最常见的风扇尺寸为80毫米,但是尺寸可以在40到230毫米之间。众所周知,不同尺寸的风扇的转速也不同。Typically,80 mm风扇的转速为2000转/分(表示微流体中普通薄层的合适转速)。<p><p><span style=“color:000080”><strong>What do I need?<strong><span><p>parts for the spin coater<p><ul><li>personal computer fan</li><li>insulated male/male wire pin connectors</li><li>tesa power strip</li><li>wall chargers from(old)mobile phones</li><ul><p>parts and chemicals for the specific examples</p><ul><li>milled poly(methyl methacrylate)(pmma)microchannel</li><li>glass slide</li><li>Sylgard®184硅酮弹性体套件</li><li>clumps<li><ul><p><span style=“color:000080”><strong>what do i do?<strong><span><p><p>assembling of spin coater<p><p>1.remove the fan from an old pc(or mac,从旧PC(或Mac)),if are particularly posh) (Fig.1).</p><p><a href="//www.xcmww.com/chipsandtips/files/2018/04/CHIPS1.png"><img class="wp-image-2271 aligncenter" src="//www.xcmww.com/chipsandtips/files/2018/04/CHIPS1-300x148.png" alt="" width="418" height="206" srcset="//www.xcmww.com/chipsandtips/files/2018/04/CHIPS1-300x148.png 300w,//www.xcmww.com/chipsandtips/files/2018/04/chips1-768x378.png 768w,//www.xcmww.com/chipsandtips/files/2018/04/chips1.png 840w“尺寸=”(最大宽度:418px)100vw,418px“/>.<a>.<p><p>2.用绝缘的阴、阳线插脚连接壁式充电器和风扇线。之后,打开风扇,连接雌雄管脚。<p><a href=“//www.xcmww.com/chipsandtips/files/2018/04/chips-5.png”><img class=“wp-image-2273 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2018/04/chips-5-300x286.png”alt=“”width=“338”height=“322”srcset=“//www.xcmww.com/chipsandtips/files/2018/04/chips-5-300x286.png 300w,//www.xcmww.com/chipsandtips/files/2018/04/CHIPS-5-768x732.png 768w,//www.xcmww.com/chipsandtips/files/2018/04/chips-5.png 842w“尺寸=”(最大宽度:338px)100vw,338px“/>.<a>>.<p>><p>3.使用Tesa电源板,固定基板(即玻璃滑片或PMMA微通道)到风扇的中央部分(左图)。对于大于风扇的设备,使用适当的塑料塞提升设备(右图)。<p><p><a href=“//www.xcmww.com/chipsandtips/files/2018/04/tips1.png”><img class=“wp-image-2274 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2018/04/tips1-300x147.png”alt=“”width=“359”height=“176”srcset=“//www.xcmww.com/chipsandtips/files/2018/04/tips1-300x147.PNG 300W,//www.xcmww.com/chipsandtips/files/2018/04/tips1-768x377.png 768w,//www.xcmww.com/chipsandtips/files/2018/04/tips1.png 841w“尺寸=”(最大宽度:359px)100vw,359px“/>.<a>.<p><p>4.滴下,用(微型)移液管,基板顶部含有涂层材料的液体。<p><p><a href=“//www.xcmww.com/chipsandtips/files/2018/04/tips2.png”><img class=“size medium wp-image-2276 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2018/04/tips2-300x300.png”alt=“”width=“300”height=“300”srcset=“//www.xcmww.com/chipsandtips/files/2018/04/TIPS2-300x300.PNG 300W,//www.xcmww.com/chipsandtips/files/2018/04/tips2-150x150.png 150w,//www.xcmww.com/chipsandtips/files/2018/04/tips2.png 413w“尺寸=”(最大宽度:300px)100vw,300px“/>.<a>.<p><p>5.打开风扇并旋转涂层基板约30秒(时间可能因所需基板粘度和涂层厚度而异)。<p><p>6.通过镊子从玻璃载玻片上剥离PDMS膜来验证涂层(左图)或通过显微镜分析微通道轮廓(右面板)。<p><p><a href=“//www.xcmww.com/chipsandtips/files/2018/04/tips3.png”><img class=“wp-image-2277 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2018/04/tips3-300x119.png”alt=“”width=“461”height=“183”srcset=“//www.xcmww.com/chipsandtips/files/2018/04/tips3-300x119.png 300w,//www.xcmww.com/chipsandtips/files/2018/04/tips3-768x305.png 768w,//www.xcmww.com/chipsandtips/files/2018/04/tips3-1024x406.png 1024w,//www.xcmww.com/chipsandtips/files/2018/04/tips3.png 1265w“尺寸=”(最大宽度:461px)100vw,461px“/>.<a><p><p><span style=“color:000080”><strong>what else should i know?在本技巧中,使用旧的电子零件开发了一种用于微流体应用的便携式旋转镀膜机。一个风扇可以重复使用很多次(在我们的经验中多达数百次)。The amount of PDMS (in form of droplets) falling on the fan is quite limited.如有必要,风机可在使用后用蘸有石油醚(又名液体石蜡或白色石油)的擦布擦拭干净。在最坏的情况下(很少发生),风扇很容易更换,因为任何旧的未使用的PC都可以免费使用它们。<p><p style=“text-Align:Justify”><span style=“color:333333”>Acknowledgements<span><p style=“text-Align:Justify”>This work was supported by the ministt_re de l'enseignment sup_rieur et de la recherche,巴黎笛卡尔大学,the Centre National de la Recherche Scientifique (CNRS),国家卫生研究所(INSERM)。这项工作由法国校区(n°39525QJ)创建,并在皮埃尔·吉勒斯·德根尼斯研究所设备(“Investissements d'Avenir”项目)的支持下开展。参考文献:ANR 10-nano 0207)。来自意大利弗朗哥大学的资助G18-208得到了感激。<p>references<p><p>[1]d.B.霍尔P.昂德希尔and J.M托克尔森“超薄和超薄聚合物薄膜的自旋涂层”,<em>聚合物工程与科学,新利手机客户端</EM>38,不。12,聚丙烯。2039-2045,1998.<p><p>[2]s.Halldorsson,e.LucumiR.G_Mez SJ_Berg,德国R.MFleming"Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices," <em>Biosensors and Bioelectronics,</EM>63,聚丙烯。218-211,2015.<p><p>[3]r.VecchioneG.皮婷噢咯d.Guarnieria.P.FalangaP.a.奈蒂“旋转涂层技术从方形到圆形聚合物微通道:一个低成本的内皮细胞培养平台,”<em>生物制造,</EM>8,不。2,聚丙烯。02500~025002016年5月2016.<p><div class=“lightsocial_container”><a class=“lightsocial_a”href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f&title=a+second+life+for+old+electronic+parts%3a+a+spin+coater+for+microfluidic+applications“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png“alt=”digg this“title=”digg this“/><a>;<a class=”lightsocial_a“href=”http://www.reddit.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f&title=a+second+life+for+old+electronic+parts%3a+a+spin+coater+for+microfluidic+applications“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/reddit.png“alt=”reddit this“title=”reddit this“/><a><a class=”lightsocial_a“href=”http://www.stumbleupon.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f&title=a+second+life+for+old+electronic+parts%3a+a+spin+coater+for+microfluidic+applications“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/stumalt=“现在绊倒!”title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?t=a+second+life+for+old+electronic+parts%3a+a+spin+coater+for+microfluidic+applications&u=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f“><img class=“light social-img”src=“//www.xcmww.com/chipsandtips/wp content/plugins/light social/facebook.png“alt=”share on facebook“title=”share on facebook“/><a><a class=”lightsocial_a“href=”http://delicious.com/save?title=a+second+life+for+old+electronic+parts%3a+a+spin+coater+for+microfluidic+applications&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f“><img class=“light social-img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png“alt=”bookmark this on delicious“title=”bookmark this on delicious“/><a><a class=”lightsocial_a“href=”http://www.linkedin.com/shareArticle?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f&title=a+second+life+for+old+electronic+parts%3a+a+spin+coater+for+microfluidic+applications&summary=“&source=”><img class=“lightsocial-img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light social/linkedin.png“alt=”share on linkedin“title=”share on linkedin“/><a><a class=”light social_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png“alt=”bookmark this on technorati“title=”bookmark this on technorati“/><a>><a class=“lightsocial_a”href=“http://twitter.com/home”?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f“><img class=“light social”img“src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png”alt=“post on twitter”title=“post on twitter”/>=<a>>social_a“href=”http://www.google.com/buzz/post?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f04%2f25%2fa-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png“alt=”google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2018/04/25/a-second-life-for-old-electronic-parts-a-spin-coater-for-microfluidic-applications/feed/ Development of a cell culture microdevice with a detachable channel for clear observation //www.xcmww.com/chipsandtips/2018/02/21/development-of-a-cell-culture-microdevice-with-a-detachable-channel-for-clear-observation/ //www.xcmww.com/chipsandtips/2018/02/21/development-of-a-cell-culture-microdevice-with-a-disabled-channel-for-clear-observation/评论 结婚,2018年2月21日09:14:08+0000 卡林顿先生,编辑助理 细胞 //www.xcmww.com/chipsandtips/?P=2227 Eriko KamataMomoko Maeda金谷光子,Kae Sato*化学和生物科学系,新利手机客户端科学院,新利手机客户端Japan Women's University,Bunkyo东京112 868Japan *E-mail: satouk@fc.jwu.ac.jp Why is this useful?已有许多关于细胞培养用微流控装置的报道,其上下微通道由一层薄薄的PDMS膜分离。在这些设备中,[…] <p>野田惠子,Momoko Maeda金谷光子,Kae Sato*<p><p><em>Department of Chemical and Biological S新利手机客户端ciences,科学院,新利手机客户端Japan Women's University,Bunkyo东京112 868日本在细胞培养中有许多微流体设备的报告,它们具有由薄pdms膜分离的上下微通道。在这些设备中,下沟道常干扰上沟道细胞的显微观察。为了避免干扰,a microdevice with a detachable lower channel was developed.</p><p style="text-align: left"><span style="color: #000080"><strong>What do I need?</strong></span></p><p style="text-align: left"><strong><em>Materials</em></strong>:</p><p style="text-align: left">PDMS (SILPOT 184w/c,Dow Corning Toray)<p><p style=“text-Align:Left”>Hexane<p style=“text-Align:Left”>PMMA Sheet(56×76×2 mm)<p><p style=“text-Align:Left”>Glass Slides(52×76 mm and 26×76 mm)<p><p style=“text-Align:Left”>Cover Slip(24×60 mm)<p><p style=“text-Align:Left”>1 kg weight<p style=“text-Align:Left”>PTFE Tubing(1×2 mm and0.46×0.92 mm)<p><p style=“text-Align:Left”>tygon tubing(1.59×3.18 mm)<p><p style=“text-Align:Left”>Biophy punches(1 mm and 2 mm,Kai Corporation)<p><p style=“text-Align:Left”>Equipment:<p><p style=“text-Align:Left”>Vacuum Dripher</p><p style=“text-Align:Left”>Oven(65˚c and 100˚c)<p><p style=“text-Align:Left”>Spin Coater</p><p style=“text-Align:Left”>Plasma Generator</p><p style=“text-Align:Left”>#000080“><strong>我该怎么做?在A 10:1质量比下混合弹性体和固化剂。在真空下对混合物进行除气,直到没有气泡为止(20分钟)。将脱气后的PDMS混合物倒在母版上,具有上通道(1×1×10 mm)或下通道(0.5×2×15 mm)结构,然后把它放在65摄氏度的烤箱里1小时。从母版上剥下PDMS复制品并将其粘到玻璃载玻片上(26×76 mm)。将其放置在100˚C的烘箱中1 h(图1)。<p><ol start=“2”><li><em><strong>Preparation of a Thin PDMS Membrane(PDMS薄膜制备)<strong><em><li><ol><p>Spin coat 600微升of the PDMS预聚物(at a 10:1 mass ratio)on a PMMA sheet at 500 rpm for 20 s followed by 2400 rpm for 600 s.在65摄氏度下烘烤1.5小时。<p><div id=“attachment_2229”style=“width:310px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2018/01/ct.jpg”><img class=“wp-image-2229 size medium”src=“//www.xcmww.com/chipsandtips/files/2018/01/ct-300x191.jpg”alt=“”width=“300”height=“191”srcset=“//www.xcmww.com/chipsandtips/files/2018/01/CT-300x191.JPG 300W,//www.xcmww.com/chipsandtips/files/2018/01/ct.jpg 638w“尺寸=”(最大宽度:300px)100vw,300px“/><a><p class=“wp caption text”>Fig.1 PDMS sheet with the upper channel,下面的通道,聚二甲基硅氧烷膜和管道。<p>><div>><ol start=“3”><li>><em>><strong>permanent bonding of the PDMS film and the sheet with the upper channel.<strong>><em>><li>><p>punch the inlet and outlet holes at both the ends of the upper channel with a 2-mm biopsy punch.Expose both the bonding surfaces of the PDMS membrane and the PDMS sheet with the upper channel (upper sheet) to plasma at 100 W,35 s(图2a和2b)。层压并在65摄氏度下烘烤1小时(图2c)。Remove the PMMA sheet,并从膜侧使用1-mm活检冲头打孔,以将板材与下通道连接。<p><p><p><div id=“attachment_”style=“width:501px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2018/01/chips.jpg”><img class=“wp-image-2236”src=“//www.xcmww.com/chipsandtips/files/2018/01/chips-300x229.jpg“alt=”width=“491”height=“375”srcset=“//www.xcmww.com/chipsandtips/files/2018/01/chips-300x229.jpg 300W,//www.xcmww.com/chipsandtips/files/2018/01/chips-768x586.jpg 768W,//www.xcmww.com/chipsandtips/files/2018/01/chips.jpg 976w“尺寸=”(最大宽度:491px)100vw,491px“/><a><p class=“wp caption text”>Fig.2(a)Schematic diagram of bonding the PDMS film and the upper sheet.(b)血浆处理。(c)粘合的PDMS膜和片材。<p>><div>><ol start=“4”><li>><em>><strong>可拆卸的PDMS膜和PDMS片材的粘合与下通道-<strong>><em>><li>><p>The PDMS sheet with the lower channel(lower sheet)is bonded to the PDMS film by using a PDMS prepolymer diluted with heane(a dilution ratio of 1:3)as a glue<sup>1</sup>(图3a)。在玻璃载玻片(52×76 mm)表面以2000转/分的速度旋转稀释的PDMS预聚物(600μl)30秒,以用一薄层胶水覆盖载玻片,并将其培养10分钟以干燥溶剂(图3b)。将下片放在镀膜玻璃片上(图3c)。在与上薄板粘合的PDMS膜的四个角处涂上胶水(图3d)。从玻璃载玻片上剥下下下片材,将贴有胶水的片材表面放在PDMS膜上(图3e)。培养30分钟后,通过等离子粘合将下片粘合到盖片上。在设备上放置一个1-kg的重量和一个玻璃滑片,并在100摄氏度下烘烤1小时(图3f)。<p><div id=“attachment_”style=“width:515px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2018/02/chips.jpg”><img class=“wp-image-2267”src=“//www.xcmww.com/chipsandtips/files/2018/02/chips-300x265.jpg”alt=“”width=“505”height=“446”srcset=“//www.xcmww.com/chipsandtips/files/2018/02/chips-300x265.jpg 300W,//www.xcmww.com/chipsandtips/files/2018/02/chips-768x679.jpg 768W,//www.xcmww.com/chipsandtips/files/2018/02/chips-1024x906.jpg 1024w“尺寸=”(最大宽度:505px)100vw,505px“/><a><p class=“wp caption text”>Fig.3(a)Schematic diagram of bonding of the PDMS film and lower sheet.(b)旋涂稀释的PDMS预聚物(胶)。(c)将下片置于稀释的PDMS预聚物的薄膜上。(d)将稀释的PDMS预聚物涂在PDMS膜的四个角上。(e)将下片的涂胶面放在PDMS膜上。(f)将一个砝码和一个玻璃片放在设备上,以在100˚C下烘烤它。<p>><div>><ol start=“5”><li>><em>><strong>tubing.<em>><li>><ol>><p>connect polyterfluoroethylene(PTFE)tubes(1×2×100 mm)with tygon tubes(1.59×3.18×10 mm)to the holes present at both ends of the upper microchannel.将聚四氟乙烯管(46×0.92×150 mm)连接到下部通道的孔上。在管子根部涂上PDMS预聚物,然后在100˚C下烘烤1 h,以进行牢固连接(图4a和b)。<p><ol start=“6”><li><em><strong>cell culture.<strong><em><li><ol><p>introduct a cell suspension into the upper microchannel,用0.1 mg/ml纤维连接蛋白手工预涂。在37˚C下用5%co<sub>2<sub>for 16 h培养设备,以允许细胞粘附到上通道的底部(PDMS膜的表面)。<p><ol start=“7”><li><em><strong>detach of the lower sheet for cell observation.<strong><em><li><ol><p>remove the lower sheet from the device carefully(Fig.4c and d)。将设备的其余部分放在盖片上,用倒置显微镜观察(图4 f和h)。<p><div id=“attachment_2239”style=“width:280px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2018/01/tipss.jpg”><img class=“wp-image-2239”src=“//www.xcmww.com/chipsandtips/files/2018/01/tipss-196x300。jpg“alt=”width=“270”height=“413”srcset=“//www.xcmww.com/chipsandtips/files/2018/01/tipss-196x300.jpg 196W,//www.xcmww.com/chipsandtips/files/2018/01/tipss-768x1176.jpg 768W,//www.xcmww.com/chipsandtips/files/2018/01/tipss-668x1024.jpg 668w“size=”(最大宽度:270px)100vw,270px“/><a><p class=“wp caption text”>Fig.4(a)the complete microdevice.(b)微型装置的侧视图。细胞培养通道(上部)充满含有红色食物颜色的水,而下水道则充满了含有蓝色食物颜色的水。(c) and (d) The lower sheet is peeled off from the microdevice carefully.下片剥离前和剥离后细胞(E)的相位对比图像。用CellTracker Red CMTPX(g)在分离前和分离后染色的细胞荧光图像。<p>><p>><span style=“color:000080”><strong>conclusion.<strong>><p>><p>we developed a microfluidic device with a disableable lower microchannel.对于PDMS膜的每一侧使用不同的粘合技术是很重要的。如果下部通道中充满空气,并且设备在CO<Sub>2<Sub>孵化器中孵化,当设备从培养箱中取出时,经常在下通道中观察到露水凝结。下水道中的冷凝使观察变得困难(图4e和g)。这个问题是用可拆卸的设备解决的。<p><p><span style=“color:000080”><strong>确认。<strong><span><p>This work was supported in part by the Japan Society for the Promotion of Science(JSPS)Kakenhi Grant Number JP16H04170.<p><p><spa新利手机客户端n style=“color:000080”><strong>reference.<strong><span><p><ol><li>chueh,B.H.呵呵,DKyrtsosC.R.HoussinT.福泰N.TakayamaS.(2007)。多孔膜与多层微流控阵列系统的无泄漏结合。<em>analytical c新利手机客户端hemistry<strong>79<strong>(9),3504–3508.<li><ol><div class=“lightsocial_container”><a class=“lightsocial_a”href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-discabled-channel-for-clear-observation%2f&title=development+of+a+cell+culture+microdevice+with+a+discabled+channel+for+clear+observation“><img class=“lightsocial”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png“alt=”digg this“title=”digg this“/><a><a class=”lightsocial_a“href=”http://www.reddit.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-discabled-channel-for-clear-observation%2f&title=development+of+a+cell+culture+microdevice+with+a+discabled+channel+for+clear+observation“><img class=“lightsocial”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/reddit.png“alt=”reddit this“title=”reddit this“/><a><a class=”lightsocial_a“href=”http://www.stumbleupon.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-discabled-channel-for-clear-observation%2f&title=development+of+a+cell+culture+microdevice+with+a+discabled+channel+for+clear+observation“><img class=“lightsocial”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/StumbleUpon.png“alt=”StumbleNow!“title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?t=a+cell+culture+microdevice+with+a+disableable+channel+for+clear+observation&u=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-disabled-channel-for-clear-observation%2f“><img class=“light social”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/facebook.png“alt=”share on facebook“title=”share on facebook“/><a><a class=”lightsocial_a“href=”http://delicious.com/save?title=development+of+a+cell+culture+microdevice+with+a+disabled+channel+for+clear+observation&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-disabled-channel-for-clear-observation%2f“><img class=“lightsocial”img src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png“alt=”bookmark this on delicious“title=”bookmark this on delicious“/><a><a class=”lightsocial_a“href=”http://www.linkedin.com/shareArticle?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-disableable-channel-for-clear-observation%2f&title=development+of+a+cell+culture+microdevice+with+a+disableable+channel+for+clear+observation&summary=“&source=”><img class=“lightsocial\u img”src=“//www.xcmww.com/chipsandtis/wp content/plugins/light social/linkedin.png“alt=”share on linkedin“title=”share on linkedin“/><a><a class=”light social_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-disabled-channel-for-clear-observation%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png“alt=”bookmark this on technorati“title=”bookmark this on technorati“/></a><a class=“lightsocial_a”href=“http://twitter.com/home”?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-disableable-channel-for-clear-observation%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/>=<a class=“lightsocial”href=“http://www.google.com/buzz/post?”url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2018%2f02%2f21%2fdevelopment-of-a-cell-culture-microdevice-with-a-disabled-channel-for-clear-observation%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png“alt=”google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2018/02/21/development-of-a-cell-culture-microdevice-with-a-disabled-channel-for-clear-observation/feed/ 一种基于溶剂的PMMA微流控器件的制备方法 //www.xcmww.com/chipsandtips/2017/11/01/a-solution-based-method-to-manufacture-pmma-microfluidic-devices/ //www.xcmww.com/chipsandtips/2017/11/01/a-solution-based-method-to-manufacture-pmma-microfluidic-devices/评论 结婚,2017年11月1日10:44:53+0000 Harriet Riley开发编辑 制作 //www.xcmww.com/chipsandtips/?P=2216 穆斯塔法·阿达米;Abhay Andar;Elizabeth Tan;Govind Rao;Yordan Kostov*先进传感器技术中心,马里兰大学巴尔的摩县,1000个山顶圆,TrC 252,巴尔的摩马里兰州21250。*电子邮箱:kostov@umbc.edu为什么这有用?对微流体的需求稳步增长,部分原因在于护理点设备的日益普及[1]通常,微流控芯片 <p>穆斯塔法·阿达米;Abhay Andar;Elizabeth Tan;Govind Rao;Yordan Kostov*<p>Center for advanced sensor technology,马里兰大学巴尔的摩县,1000个山顶圆,TrC 252,巴尔的摩马里兰州21250.<p>*email:kostov@umbc.edu.<p><strong>为什么这个有用?对微流体的需求已稳步增加,部分原因在于护理点设备的日益普及[1]通常,微流控芯片是用热塑性塑料制成的[1]。热塑性塑料是合成聚合物,由于其能够被成型成复杂结构而受到欢迎[3,4].它们通常被用作比玻璃更安全、更便宜的替代品[3,4].然而,正确密封这些装置是一项挑战,尤其是在医学检测领域,对可靠设备的需求很高。例如,压敏粘合剂,普通密封剂,可以限制微流体通道的大小;一些粘合剂会表现出干扰芯片上运行的分析过程的反应性基团[5]。因此,需要一种不受上述限制的密封方法。<p>这里,提出了一种溶剂法。聚甲基丙烯酸甲酯(PMMA)热塑性塑料,当温度高于其玻璃化转变温度(t<sub>g<sub>)时,表现出软化,冷却后恢复到其原始状态。这一转变引入了几个直接结合选项[6]。然而,t<sub>g<sub>of pmma is 115°C.即使在这个温度下,粘合所需的压力也相当高。这会导致通道尺寸出现缺陷,当大部分材料软化时。弱溶剂的应用减少了t<sub>g<sub>only for the surface of the plastic,从而降低工艺所需的温度和压力。减小的压力降低了通道变形的可能性。此外,由于溶剂引起的软化仅限于表面(前几微米)。较深的河道结构不受影响。因此,直接溶剂粘合法允许无粘合剂粘合,并避免温度引起的变形。作为奖励,这种键的力学性能大大提高了[7]。值得注意的是,这种方法适用于通道深度大于100微米的微流体装置,通常用于由直接激光蚀刻产生的设备。<p><p>此技术的另一个优点是,当弱溶剂为乙醇时,它会导致无菌设备的产生。它们可以使用任何实验室中的基本设备快速制造[7]。为了演示这种方法,PMMA与90%乙醇一起用作溶剂,以粘合到其他板材材料,例如:<p><ul><li>PMMA sheets,,制造用于样品处理的微流体混合器和其他微流体装置(图1,Ad)[7];<li><li>eptfe膜,制造微流体气泡器(图1,c);和,<li>纤维素醋酸酯膜,定制透析设备(图1,b).<li><ul><div id=“attachment_”style=“width:608px”class=“wp caption aligncenter”><a href=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-1.jpg”><img class=“wp-image-2217 size full”src=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-1.jpg”alt=“”width=“598”height=“525”srcset=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-1.JPG 598W,//www.xcmww.com/chipsandtips/files/2017/10/31.10-1-300x263.jpg 300w“尺寸=”(最大宽度:598px)100vw,598px“/><a><p class=“wp caption text”>Figure 1.a)透析装置b)氧化还原分析附件c)微流控调试器d)微流控混合器</p>><p>><strong>what do I need?<strong><p><em>materials:<em><p><ul><li>pmma sheet,thickness of 1.5 mm (Astra Products)</li><li>PMMA sheet,厚度0.2 mm(Astra Products)<li><li>10k,20k mwco纤维素醋酸酯膜(Thermo Fisher Scientific)<li>eptfe film(sterltech,product number:ptu021350)<li>metal vise(mcmaster,产品编号:5226A3)<li><li>1000粗砂砂纸(mcmaster)<li><li>硅胶垫(mcmaster)<li><li>kim-wipes(kimberley-clark)<li><li>2 rectangular metal sheets(mcmaster)<li><li>deionized water<li>90%ethanol(deco laboratories,费希尔科学公司,试剂等级).<li><ul><p><em>equipment:.<em><p><ul><li>co2 laser cutter(universal laser systems).<li><li>conventional toaster oven.<li><li>computer aided design(cad)software(coreldraw x4).<li><p><strong>what do i do?<strong><p><ol><li>design device<ol><li>draw the desired device design using any available computer aided design(cad)software.<li><li>export the cad file into.dxf file format that is compatible with the laser cutter software.<li><li>laser cut design<ol><li>place the pmma sheet of 1.5 mm in thickness on the bed of the laser cutter.<li><li>calibrate laser cutter according to sheet thickness.<li><li>select the correct laser setting in the laser cutter software.应根据板材的材料和厚度对其进行高度校准。<li><li>激光切割设计的核心路径至1.5 mm厚的PMMA。<li><li>Next,place the other PMMA sheet of 0.2 mm in thickness onto the bed of the laser cutter and repeat points b-c</li></ol></li><li>Roughen the PMMA sheets<ol><li>After laser cutting,总共应该有三个部分:核心通道设计(1)和封面(2)。<li><li>用去离子水冲洗PMMA切口,并用自来水湿润砂纸。<li><li>sand the wetted PMMA cututors in a figure 8 like motion on the wetted Sandp纸until it is milywhite.这是为了确保PMMA片材上的平整一致性,以增加粘合。<li>用去离子水冲洗PMMA切口,并使用“Kim wipes”干燥。<li><ol><li>bond the PMMA sheets<ol><li>preheat the temperature controlled oven to 55°C.将金属虎钳和矩形金属板放入烤箱预热。为了安全起见,应使用热手套。<li><li>将干净的硅胶薄片放在矩形金属(铝)板上。<li><li>next,将微流控盒的底盖以三明治方式放置在硅胶垫的顶部。</L> < LI>将90%乙醇喷到基底覆盖片上,直到所有区域都被润湿为止。</L> > LI>放置PMMA切口的核心通道片。</L> < LI>将90%乙醇喷洒到核心通道片直至完整区域,保税,被弄湿。<li><li>放置微流控暗盒的最终封面。<li><li>放置其他硅胶垫和其他矩形金属板跟随它。<li><li>放置三明治PMMA板,硅胶垫,and rectangular metal sheet in the metal vise carefully so it does not misalign the cassette (Figure 2.)</li><li>Tighten the vise until can't turn the lever anymore.</li><li>Place the vise with the microfluidic cassette sandwich into the preheated oven for five minutes.这必须在台钳冷却之前进行。<li><li>allow to cool to room temperature and remove from metal vise and silicone pad.<li>add inlet and outlet fittings,将它们粘上或放置它们取决于首选方法</li><ol><li>bonding pmma to eptfe(or cellose acetate):<ol><li>preheat the temperature controlled oven to 85°C.将金属虎钳和矩形金属板放入烤箱预热。为了安全起见,应使用热手套。<li><li>将干净的硅胶薄片放在矩形金属(铝)板上。<li><li>next,将微流控盒的膜以三明治方式放置在硅胶垫的顶部。</L> < LI>将90%乙醇喷在膜片上,直到所有区域被润湿为止。</L> > LI>放置PMMA切口的核心通道片。</L> < LI>将90%乙醇喷洒到核心通道片直至完整区域,保税,被弄湿。<li><li>放置微流控盒的最终PMMA盖板。<li><li>放置其他硅胶垫和其他矩形金属板跟随它。<li><li>放置三明治设备,硅胶垫,小心地将矩形金属板放入金属虎钳中,使其不会与磁带错位(图2)。<p><div id=“attachment_”style=“width:928px”class=“wp caption alignone”><a href=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-2.jpg”><img class=“wp-image-2220 size full”src=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-2.jpg“alt=”width=“918”height=“276”srcset=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-2.jpg 918W,//www.xcmww.com/chipsandtips/files/2017/10/31.10-2-300x90.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/10/31.10-2-768x231.jpg 768w“尺寸=”(最大宽度:918px)100vw,918px“/><a><p class=“wp caption text”>Figure 2.粘合设置</p><div><li><li>拧紧虎钳,直到不能再转动杠杆。<li><li>place the vise with the microfluidic cardset sandwich into the preheated oven for five minutes.这必须在台钳冷却之前进行。<li><li>allow to cool to room temperature and remove from metal vise and silicone pad and remove the excess film if any with scissors.<li><li>add inlet and outlet fittings,将它们粘在一起或放置它们取决于首选方法</li>>.<li>>.<ol>><p>><strong>What else do I need to know?<strong><p><p>in order to align the sheets on to p of each other,使用了三种方法:<p><ol><li>for pmma-pmma devices it is enough to eyeball the alignment.PMMA板与中间有乙醇的板之间的粘附力足以使它们固定在适当的位置。<li><li>在放置机加工板的位置也制造了一个校准管汇。管汇将阻止板的移动(图3a.)。<li><li>where the film is thicked enough to drill a hole through,最好使用三个定位销。The pin holes are pre-fabricated when the device is machines.牙签已用作定位销(图3b)。<p><div id=“attachment_2222”style=“width:654px”class=“wp caption alignone”><a href=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-3.png”><img class=“wp-image-2222 size full”src=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-3.png”alt=“”width=“644”height=“237”srcset=“//www.xcmww.com/chipsandtips/files/2017/10/31.10-3.png 644w,//www.xcmww.com/chipsandtips/files/2017/10/31.10-3-300x110.png 300w“尺寸=”(最大宽度:644px)100vw,644px“/><a><p class=“wp caption text”>Figure 3.a)校准管汇b)3个木钉用于防止层移动</p><div><li>for thinner films,加工过的PMMA粘合在一个稍大的膜上。然后用剪刀去除多余的膜。<li>><ol>><p>><strong>Acknowledgements<strong>><p>><p>This work was funded by darpa,生物衍生药物按需(Bio-Mod)项目拨款(N66001-13-C-4023)用于财务支持。<p><p><strong>references.<strong><ul><li>sia,s.k.,&克里卡,L.J.(2008)。微流体和护理点测试。<em>lab on a chip</em>,<em>8</em>(12),1982。doi:10.1039/b817915h<<li>materials used in microfluidic devices.(N.D.).<em>Springerreference<em>。doi: 10.1007 /springerreference_67093</li><li>Liu, K.,和扇子,(2011)。热塑性微流控器件及其在蛋白质和DNA分析中的应用1288。doi:10.1039/c0an00969</li><li>tsao,c.,&德沃,D.L.(2008)。Bonding of thermoplastic polymer microfluidics. <em>Microfluidics and Nanofluidics</em>,<em>6</em>(1),1-16.doi:10.1007/s1044-008-0361-x<<li>hong,t.,鞠,吴,M,Tai,C,Tsai,C,福禄(2010)。利用二氧化碳激光器快速制作PMMA微流控芯片原型。<em>Microfluidics and Nanofluidics<em>,<em>9<em>(6),1125-1133。doi:10.1007/s1044-010-0633-0</li><li>visakh,p.m.,托马斯,S。(2011)。工程和特种热塑性塑料:尼龙:最新技术,新的挑战和机遇。<em>工程和特种热塑性塑料手册</em>,1-9。doi:10.1002/9781118229064.ch1<<li>al-adhami,M.Tilahun,DGurramkondaC.拉奥G.KostovY(2016)使用微流体装置快速检测微生物污染。在:生物传感器和生物检测:方法和协议,第二版。预计起飞时间。a.Rasooly和B.Prickril。Springer.<li><ul><div class=“lightsocial_container”><a class=“lightsocial_a”href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa solution-based method to manufacture PMMA microfluidic devices%2f&title=a+solution-based+method+to+manufacture+pmma+microfluidic+devices“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png”alt=“digg this”title=“digg this”/>><a class=“lightsocial_a”href=“http://www.reddit.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa基于溶剂的制造PMMA微流体装置的方法%2f&title=a+基于溶剂的+方法+to+manufacture+pmma+微流体+装置“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/reddit.png”alt=“reddit this”title=“reddit this”/><a class=“lightsocial”href=“http://www.stumbleupon.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa基于溶剂的制造PMMA微流体装置的方法%2f&title=a+基于溶剂的+方法+to+manufacture+pmma+microfluidic+设备“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/stumbleupon.png”alt=“stumble now!”title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?t=a+溶剂型+方法+制造+PMMA+微流控+设备&u=http%3a%2f%2f www.xcmww.com%2f chipsandtips%2f2017%2f11%2f01%2f a溶剂型制造PMMA微流控器件的方法%2f“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/facebook.png”alt=“share on facebook”title=“share on facebook“/>.<a><a class=“lightsocial_a”href=“http://delicious.com/save”?title=a+溶剂型+方法+制造+PMMA+微流体+设备&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa基于溶剂的制造PMMA微流体装置的方法%2f“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png”alt=“将此标记在美味”title=“bookmark this on Delicious”/>.<a><a class=“lightsocial_a”href=“http://www.linkedin.com/shareArticle”?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa基于溶剂的制造PMMA微流控器件的方法%2f&title=a+基于溶剂的+方法+to+manufacture+PMMA+微流控+设备&summary=&source=“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/linkedin.png”alt=“share on linkedin“title=”share on linkedin“/><a><a class=“lightsocial_a”href=“http://www.technorati.com/faves”?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa solution-based method to manufacture PMMA microfluidic devices%2f“><img class=“light social_img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png”alt=“bookmark this on technorati”title=“bookmark this on technorati”/>=<a>>_ a“href=”http://twitter.com/home?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa solution-based method to maked PMMA microfluidic devices%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/>=<a class=”light social“a”href=“http:”//www.google.com/buzz/post?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f11%2f01%2fa基于溶剂的方法制造PMMA微流控器件%2f“><img class=“light social_img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png”alt=“google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2017/11/01/a-solution-based-method-to-manufacture-pmma-microfluidic-devices/feed/ 液滴微流体的手工剃须刀图案化磁带原型制作 //www.xcmww.com/chipsandtips/2017/10/19/manual-razor-patterned-tape-based-prototyping-for-droplet-microfluidics/ //www.xcmww.com/chipsandtips/2017/10/19/manual razor-patterned tape-based prototping for droplet microfluidics/评论 清华大学,2017年10月19日08:37:56+0000 Harriet Riley开发编辑 液滴 //www.xcmww.com/chipsandtips/?P=2201 西弗拉·隆尼亚布W旗袍和ST物理科学与工程学院院长,新利手机客户端阿卜杜拉国王科技大学,新利手机客户端(KAUST),Thuwal24955-6900,沙特阿拉伯。B先进能源技术研究所,京浦国立大学,大邱韩国电话:+821053165673,办公室:+82-53-950-7590,传真:+82-53-950-6594。电子邮箱:saifullah.lone@gmail.com,inwoocheong@gmail.com,还有sigurdur.thoroddsen@kaust.edu.sa为什么有用?主题[…] <p>saifullah lone<sup>ab<sup>*i.WCheong<sup>b<sup>and s.TThoroddsen<sup>A</sup><p><sup>A</sup>Division of Physical Scien新利手机客户端ces and Engineering,阿卜杜拉国王科技大学,新利手机客户端(KAUST),Thuwal24955-6900,沙特阿拉伯。<br/><sup>b<sup>Institute of Advanced Energy Technology,京浦国立大学,大邱韩国,<br/>电话:+821053165673,办公室:+82-53-950-7590,传真:+82-53-950-6594。电子邮箱:saifullah.lone@gmail.com,inwoocheong@gmail.com,和sigurdur.thoroddsen@kaust.edu.sa</p><p><strong>为什么它有用?<p>The subject of droplet microfluidics has grown in importance among researchers in chemistry,液滴微流体的主题在化学研究人员中新利手机客户端越来越重要,物理和生物学,因此,它在药物输送方面得到了应用,封装,单细胞分析,皮克林乳剂和相分离。为了产生单分散液滴,various methods have been employed in constructing microfluidic devices.Emulsions with a coefficient of variation ≤ 5% have been previously reported in T-junction,流动聚焦同轴的,以及其他类型的微流体装置。尺寸小于等于100微米的微滴在工业和生物领域有着诱人的应用。洁净室软光刻技术获得的小通道直径是制造微流体器件的最精确技术。<sup>1,2</sup>此技术广泛用于为基于PDMS的设备制作主模具。<sup>3</sup>然而,关于成本和复杂性,在经济困难的国家和实验室安装洁净室软光刻机是困难的。因此,成本和特殊的洁净室培训限制了其广泛的应用。开发低成本、稳健的技术;喷墨打印,数控加工,xurography或剃刀书写,印刷电路技术,在没有洁净室技术的情况下,已经对印刷和剥离(PAP)微加工和三维印刷进行了测试,以制造微流体装置。通过非洁净室技术在100微米尺寸范围内形成液滴具有挑战性,且易于升级。最近,通过使用激光图案化胶带,已经报道了微流体的快速成型技术<sup>4->sup>该技术依赖于计算机控制的CO<sub>2->sub>激光束。这项工作进一步简化了手工剃刀图案化磁带为基础的原型哺乳动物细胞图案化。<sup>5<sup>building on this prototping concept,we extended the idea to produce monodisperse droplets under 100 µm size rages by overlapping the razor patterned tape strips (at right angles) on a flat glass surface.在100微米尺寸范围内生产单分散乳剂在制药和化妆品行业有着巨大的用途。因此,我们的方法很可能是制造液滴微流控发生器最简单的方法之一。<p><strong>我需要什么?<strong><p><ol><li>单面胶带(Temflex 1500 Electrical,厚度150μm)<li><li>Flat glass slides,例如显微镜载玻片i><li>氧气等离子</li><li>Oven or Hot Plate<li><li>a microfluidic pdms puncher for drilling holes<li><li>deionized water(d.i.水)和20 cSt和10 cSt硅油<p>图1概述了原型制作过程。原型制作首先将胶带贴在平板玻璃基板上。用锋利的刀片,胶带被切成平行的细条。胶带的厚度(150微米)决定了微通道的深度,但这可以通过将多层胶带相互重叠来增加。接下来,从细带外的区域取出胶带。<p>to construct a cross junction,一条胶带被提起,并以90_的角度水平放置在另一条上。轻轻按压接头,确保条带连接良好。这些胶带的粘合条用作基于PDMS的复型铸造的母带。<p>PDMS硅橡胶基和固化剂的混合物(以10:1的比例)在塑料培养皿中浇注在母带的顶部。将混合物在真空下脱气1 h,并在65℃下固化4 hr。然后从主服务器上剪切和剥离固化的PDMS副本。按照上述步骤,可以重复使用主控形状来制作PDMS副本的多个副本。通过PDMS副本钻取入口和出口孔,然后粘合在玻璃基板上,复制品和玻璃都暴露在氧等离子体中后。图1(g)显示了产生单分散油包水(w/o)乳液的PDMS装置。该技术很容易扩展到制造T型接头或双T型接头原型(图1h和i)。<p><table style=“height:114px;width:666px”><tbody><tr style=“height:250px”><td style=“width:344px;height:250px”><a href=“//www.xcmww.com/chipsandtips/files/2017/10/5.png”><img class=“AlignLeft wp-image-2202”src=“//www.xcmww.com/chipsandtips/files/2017/10/5.png“alt=”width=“331”height=“242”srcset=“//www.xcmww.com/chipsandtips/files/2017/10/5.png 731W,//www.xcmww.com/chipsandtips/files/2017/10/5-300x220.png 300w“尺寸=”(最大宽度:331px)100vw,331px“/><a><td><td style=“width:324px;height:250px”><strong>图1.[strong>(a)Manual Razor Patterned Tape Based Protoming for Droplet Microfluidics(b)Strips of胶带on Flat Glass基板cut by a Sharp Razor Blade and a Ruler,(c)PDMS铸件,将聚二甲基硅氧烷弹性体基料和固化剂的混合物倒入塑料容器中。(d)在固化后切割和剥离复件。(e)最终组装的交叉接头微流体PDMS装置。(f)在光学显微镜下与注射泵相连的微流体装置。(g)显示流动聚焦原型油滴形成中的水的视频帧。面板(h)和(i)显示了剃刀图案的基于胶带的T型接头和双T型接头原型,分别。<td><tr><tr style=“height:287px”><td style=“width:344px;height:287px”><strong>图2.<strong>(a)image sequence from a video recorded at 10 kfps showing water droplet formation at a cross junction.time between后续帧是200微秒。(b)droplet size a s a function of毛细血管数based on the visocity and flow-连续相速率(20 cSt硅油)对于面板(c)中水平线上方300μm宽的通道和(d)中水平线下方150μm带10 cSt硅油的通道。(c)从视频中提取的图像,showing flow regimes and droplet sizes as a function of flow-rate,通道宽度为300微米,通道深度为150微米。(d)来自150微米宽和深度的小型方形通道的视频帧。<td><td style=“width:324px;height:287px”><a href=“//www.xcmww.com/chipsandtips/files/2017/10/6.png”><img class=“AlignRight wp-image-2203”src=“//www.xcmww.com/chipsandtips/files/2017/10/6-300x233.png”alt=“”width=“328”height=“254”srcsset=“//www.xcmww.com/chipsandtips/files/2017/10/6-300x233.png 300w,//www.xcmww.com/chipsandtips/files/2017/10/6.png 704w“尺寸=”(最大宽度:328px)100vw,328px“/>.<a>.<td>.<tr>.<tbody>.<table><p>figure 2(a),演示了我们基于磁带的微流体装置中交叉连接处的液滴形成,通道宽度和深度分别为300微米和150微米。在图2(c)中,我们将水相的流速保持在25μl/min,while systematically increasing the flow-rate of outer continuous oil-phase (20 cSt silicone oil).  As the outer flow-rate is increased,发现该状态从低流速下的滴落转变为高流速下的喷射(图2(c))对于最低流速,水相破裂成细长的塞子,在较高的流速下,规则液滴被挤压掉。各种因素影响液滴的大小,但它主要是由连续相中粘性应力之间的竞争决定的,这一竞争主要由以下因素决定的:液滴和界面张力。Here <em>µ</em> is the dynamic viscosity of the outer phase and <em>U </em>is its velocity;while <em>s</em>  is the interfacial tension between the water and the oil,<em>对于小型地震道,特征长度比例对于这两种力来说是相同的,因此它从平衡中退出,当<em>当油相流速达到65微升/分钟时,液滴的尺寸达到约100μm,液滴在距交叉点较远的地方破碎。图2(d)显示了通道宽度为150微米、通道深度为150微米的水滴形成。在这种情况下,液滴尺寸达到约73微米,当油相(10 cSt)以25μl/min流动且水相以10μl/min流动时。<p><p><p><strong>Acknowledge:<strong>此项工作由阿卜杜拉国王科技大学(Kaust)共同资助,新利手机客户端ThuwalSaudi Arabia,以及贸易部,工业和能源,Korea (Grants No.10067082 and 10070241).</p><p> </p><p><strong>Reference</strong></p><p>[1] Qin,d.夏Y.;Whitesides,<a href=“http://pubs.acs.org/author/whitesides%2c+george+m”>g=>M特征尺寸大于20μm的复杂结构的快速成型。[谚]马特。<em><strong>1996<strong><em>,<em><em>8<em>,917-919.<p><p>[2]xia,Y.;Whitesides,G.M软光刻。Angew。化学。INT预计起飞时间。1998,37 550-575.<p><p>[3]<a href=“https://www.ncbi.nlm.nih.gov/pubmed/?Term=Duffy%20dc%5作者%5d&Cauthor=true&Cauthor Uid=21644679“>Duffy,d.C<;<A href=“https://www.ncbi.nlm.nih.gov/pubmed/?Term=McDonald%20jc%5作者%5d&Cauthor=true&Cauthor Uid=21644679“>McDonald,JC<;<A href=“https://www.ncbi.nlm.nih.gov/pubmed/?Term=Schueller%20oj%5作者%5d&Cauthor=true&Cauthor Uid=21644679“>Schueller,Oj</a>;<a href=“https://www.ncbi.nlm.nih.gov/pubmed/?term=whitesides%20gm%5作者%5d&cauthor=true&cauthor uid=21644679“>whitesides,G.M</a>.聚(二甲基硅氧烷)中微流体系统的快速成型。肛门的化学,<strong>1998</strong>,<em>70</em>,4974–4984.<p><p>[4]Luo,L.四、C.嗯,W唐;KC.;L.约巴斯,L.利用激光图案化胶带快速制作微流体系统的原型。微机械Maimon</EM>。<strong>2007<strong>,17 N107–N111</p><p>[5]Anil,B.S.;AliH.;CheulH.C.;拉奎尔P.C.用于哺乳动物细胞图案化的胶带软光刻:伤口愈合分析的应用。<em>生物技术,<em><strong>2012,<strong>53 315–318.<p><div class=“lightsocial_container”><a class=“lightsocial_a”href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fmanual razor-patterned tape-based prototyping for droplet microfluidics%2f&title=manual+razor+patterned+tape+based+prototyping+for+droplet+microfluidics“><img class=“light social”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png”alt=“digg this”title=“digg this”/>.<a><a class=“lightsocial_a”href=“http://www.reddit.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fmanual razor-patterned tape-based prototping for droplet microfluidics%2f&title=manual+razor+patterned+tape+based+prototping+for+droplet+microfluidics“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/reddit.png”alt=“reddit this”title=“reddit this”/>=<a><a class=“lightsocial_a”href=“http://www.stumbleupon.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fmanual razor-patterned tape-based prototping for droplet microfluidics%2f&title=manual+razor+patterned+tape+based+prototyping+for+droplet+microfluidics“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/stumbleupon.png”alt=“stumb现在!”title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?t=manual+razor+patterned+tape+based+prototyping+for+droplet+microfluidics&u=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fmanual razor patterned tape-based prototyping for droplet microfluidics%2f“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/facebook.png”alt=“在faceboo上共享”k“title=”share on facebook“/><a><a class=”lightsocial_a“href=”http://delicious.com/save?title=manual+razor+patterned+tape+based+prototyping+for+droplet+microfluidics&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fmanual razor-patterned tape-based prototyping for droplet microfluidics%2f“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png”alt=“bookThis on Delicious“title=”bookmark this on Delicious“/><a><a class=“lightsocial_a”href=“http://www.linkedin.com/shareArticle”?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fManual Razor Patterned Tape Based Protoming for Droplet Microfluidics%2f&title=Manual+Razor+Patterned+Tape+Based+Protoming+for+Droplet+Microfluidics&summary=&source=“><img class=“light social”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/linkedin.png“alt=”share on linkedin“title=”share on linkedin“/><a><a class=”lightsocial_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fManual Razor Patterned Tape Based Protoming for Droplet Microfluidics%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png“alt=”bookmark this on technorati“title=”bookmark this on technorati“/><a><a class=”lightsocial_a“href=”http://twitter.com/home?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fManual Razor Patterned Tape-Based Protoming for Droplet Microfluidics%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/><a>”ef=“http://www.google.com/buzz/post?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f19%2fManual Razor Patterned Tape-Based Protoming for Droplet Microfluidics%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png“alt=”google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2017/10/19/manual-razor-patterned-tape-based-prototyping-for-droplet-microfluidics/feed/ 微流体装置中微生物的快速接种与回收 //www.xcmww.com/chipsandtips/2017/10/04/rapid-invention-and-recovery-of-microbics-in-a-microfluidic-device/ //www.xcmww.com/chipsandtips/2017/10/04/rapid-invention-and-recovery-of-microbes-in-a-microfluidic-device/响应 结婚,2017年10月4日08:36:13+0000 Harriet Riley开发编辑 细胞 //www.xcmww.com/chipsandtips/?P=2187 格雷纳A.1,2,TekwaE.W.1,3,冈萨雷斯A.1,NguyenD.4 1生物学部,麦吉尔大学1205博士Penfield蒙特利尔,QCH3A 1B1,加拿大。生态与进化部,多伦多大学威尔科克斯街25号,多伦多,在,M5S 3B2,加拿大3生态部,进化,以及自然资源,罗格斯大学大学农场路14号,New Brunswick,NJ08901,美国。[…] <p><span style=“FONT SIZE:8pt”>greiner,A.<sup>1,2</sup>,TekwaE.W.<sup>1,3</sup>,冈萨雷斯A.〈1〉/SUP>Nguyend.<sup>4</sup><span><p><span style=“font-size:8pt”><sup>1</sup>Department of Biology,麦吉尔大学1205博士Penfield蒙特利尔,QCH3A 1B1,加拿大。<span><br/><span style=“FONT SIZE:8pt”><sup>2<sup>Department of Ecology and Evolution,多伦多大学威尔科克斯街25号,多伦多,在,M5S 3B2,加拿大进化,以及自然资源,罗格斯大学大学农场路14号,New Brunswick,NJ08901,美国。<span><br/><span style=“FONT SIZE:8pt”><sup>4<sup>Meakins Christie Laboratories,麦吉尔大学健康中心研究所,以及医学部,麦吉尔大学迪卡里大道1001号,蒙特利尔,QCH4A 3J1,Canada.</span></p><p> </p><p><strong><em>Why is this useful?</em></strong></p><p>Microfluidic devices are used for many different types of experiments across the medical,生态和进化学科(Park等人,2003;Keimer-等人,2008;康奈尔等人,2013;霍尔和德克尔,2014)。例如,用于微生物实验的微流体装置需要接种到模拟自然微生物环境(如多孔土壤)的较小的培养箱中(或等,2007)和生物宿主(Folkesson等人,2012)。这些装置通常涉及复杂的泵装置和不可逆的密封。我们开发了一种只需要普通实验室设备的技术,使设备可重复使用,同时允许微生物不受干扰地生长(基于Tekwa等人,2015;TekWa.等,<em>在Review中。Here,我们为聚二甲基硅氧烷(PDMS)实验装置的组装和先前未记录的无损拆卸提供了详细的指南,以恢复微生物<em>原位然后,可以对其进行相对计数和进一步的种群变化的分子分析。这是每一步视频的补充。<p><p><a href=“//www.xcmww.com/chipsandtips/files/2017/10/1.png”><img class=“AlignCenter wp-image-2192 size medium”src=“//www.xcmww.com/chipsandtips/files/2017/10/1-300x200.png”alt=“”width=“300”height=“200”srcset=“//www.xcmww.com/chipsandtips/files/2017/10/1-300x200.png 300w,//www.xcmww.com/chipsandtips/files/2017/10/1-768x512.png 768w,//www.xcmww.com/chipsandtips/files/2017/10/1-1024x683.png 1024w,//www.xcmww.com/chipsandtips/files/2017/10/1.png 1086w“尺寸=”(最大宽度:300px)100vw,300p x“/>.<a><p><p><em>Figure 1:Microfluidic device containing 14 habitates on an orporate(PDMS)layer pressed to a 60mm x 24mm glass cover slip.栖息地深度为10或20微米,直径从1400微米到2670微米不等,呈环状或网状斑块。该装置用于测试栖息地斑块对微生物动态的影响。栖息地被染成蓝色以便于观察。有关更多信息,请参见Tekwa等人。(2015年)。<em>><p>><em>><em>><em>><p>><hr/><p>><strong>><em>what do i need?<em><strong><p><ul><li>单层PDMS设备with ocitations on one side.<li><li>pipette+sterile pipette tips.<li><li>sterile petri discases(1/device)<li><li>sterile tweezer.<li><li>inoculum.<li>filtered water.<li><li>kimwipes.<li><li>autoclavable plastic container.<li>ethanol.<li>tinfoil.<li>sterile 1μl invoiceing loop(1/栖息地).<li><li>无菌eppendorfs.<li><li>磷酸盐缓冲盐水(PBS).<li><li>biological safety cabinet(BSC).<li><ul><hr/><p><strong><em>how do i do it?<em><strong><p><ol><li><u>clean the pdms devices<u>:pdms device should be pre-treated once with 0.01n hcl for one hour and plasma treated to keep it hydrosilic and amenable to bonding to glass or plastic substances(cho et al.,2007;TekWa.等,2015)。将1/3的可高压消毒塑料容器装满70%乙醇和PDMS装置,然后用锡纸覆盖。让他们在水槽中静置30分钟以上,然后小心地将乙醇处理掉。向容器中加水10次,然后将其清空,以冲洗设备。最后,用过滤水填充容器,用锡箔和高压灭菌器密封,以便对设备进行消毒。<li><li><u>invocing the devices<u>(perform in a biological safety cabinet,BSC):将设备在BSC中干燥30分钟。将特征朝上的设备放置在培养皿盖上,并放置少量(即0.7μl)接种到每个(样品装置中14个)上图1)生境。液体的量必须足以填满栖息地,但不能过多地防止PDMS和盖玻璃/培养皿之间的粘合(图2)。使用无菌镊子,拿起设备,面朝下放置在培养皿或盖玻片的中央,用戴手套的手指反复按压背部,将其密封在表面上,使用Kimwipe从侧面吸走多余的液体。Then surround,但不是触摸,将Kimwipes浸泡在过滤水中的装置(图3)确保设备不会在培养箱中变干,在关闭培养皿之前。在培养箱中直立放置所需时间。实验现在可以进行24小时(见补充视频)。<li>><ol><p><a href=“//www.xcmww.com/chipsandtips/files/2017/10/2.png”><img class=“size medium wp-image-2193 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2017/10/2-300x157.png”alt=“”width=“300”height=“157”srcset=“//www.xcmww.com/chipsandtips/文件/2017/10/2-300x157.png 300w,//www.xcmww.com/chipsandtips/files/2017/10/2.png 640w“尺寸=”(最大宽度:300px)100vw,300px" /></a></p><p><em>Figure 2.带有细菌液滴的装置,每个栖息地1滴。<em>><p>><a href=“//www.xcmww.com/chipsandtips/files/2017/10/3.png”><img class=“size medium wp-image-2194 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2017/10/3-300x190.png”alt=“”width=“300”height=“190”srcset=“//www.xcmww.com/chipsandtips/files/2017/10/3-300x190.png 300w,//www.xcmww.com/chipsandtips/files/2017/10/3.png 610w“尺寸=”(最大宽度:300px)100vw,300px“/>.<a><p><p><em>Figure 3.“直立”培养皿+Kimwipes+device+coverslip ready to be culted.<em>><p>><em>><em>><em>><p>><ol start=“3”>><li>><u>recovering from the devices.<u>(perform in a bsc):open petri dish,小心地取下并丢弃Kimwipes,然后使用无菌镊子轻轻地打开设备并将其面朝上放置在培养皿盖中。12小时左右,栖息地之间的空间将没有PDMS吸收的液体,防止微生物在拆卸过程中混入气室。已经干涸的栖息地将呈现白色(图4)不能使用。用PBS将无菌接种环浸入eppendorf中,然后用这个环刮一个栖息地(图5)再次将接种环浸入eppendorf培养基中,然后将其培养过夜以进行进一步的分析,例如电镀以进行相对细胞计数(如果有不同菌株)和其他分子分析。对你感兴趣的其他栖息地重复上述步骤,使用新的接种环。PDMS设备现在可以像步骤1中一样进行清洁并再次使用。<li><ol><p><a href=“//www.xcmww.com/chipsandtips/files/2017/10/4.jpg”><img class=“size medium wp-image-2196 aligncenter”src=“//www.xcmww.com/chipsandtips/files/2017/10/4-300x169.jpg”alt=“”width=“300”height=“169”srcsset=“//www.xcmww.com/chipsandtips/files/2017/10/4-300x169.JPG 300W,//www.xcmww.com/chipsandtips/files/2017/10/4-768x434.jpg 768W,//www.xcmww.com/chipsandtips/files/2017/10/4-1024x578.jpg 1024w“尺寸=”(最大宽度:300px)100vw,300px“/>.<a><p><p><em>Figure 4.接种和孵化装置的视图,从培养皿底部看。<em>><p>><em>><a href=“//www.xcmww.com/chipsandtips/files/2017/10/5.jpg”><img class=“size medium wp-image-2195 AlignCenter”src=“//www.xcmww.com/chipsandtips/files/2017/10/5-300x200.jpg”alt=“”width=“300”height=“200”srcset=“//www.xcmww.com/chipsandtips/files/2017/10/5-300x200.jpg 300W//www.xcmww.com/chipsandtips/files/2017/10/5-768x512.jpg 768W,//www.xcmww.com/chipsandtips/files/2017/10/5-1024x682.jpg 1024w“尺寸=”(最大宽度:300px)100vw,300px“/>.<a>.<em>.<p><em>Figure 5.从分解后的PDMS设备中的栖息地中回收细菌。<em>><p>><p>><p>><strong>><em>what else should i know?<em><strong><p><p>The recovery technology can be used to estimate relative proportions of different types of microbes(e.g.变形频率)这在进行竞争分析和进化实验时很有用。与Tekwa等人不同。(2015)这项技术放弃了共聚焦显微镜的使用;相反,通过直接微生物恢复和标准电镀程序来评估设备的内容。<p><p><p><strong><em>links to videos.<em><strong><p>these videos go through the specific procedure that we used to perform experimentals on competition and cooperation in<em>pseudomonas aeruginosa.<em>and may be有助于确定介质的具体数量,生长时间,等。这可用于使用类似PDMS微流体设备的实验。<p><p>第1部分–intro+washing the devices<a href=“https://youtu.be/bne3zn3wu4q”>https://youtu.be/bne3zn3wu4q<a>><p>第2部分–invocing the devices<a href=“https://youtu.be/p-uyireyrym”>https://youtu.be/p-uyireyrym<a>><p>第3部分–recovering from the devicees<a href=“https://youtu.be/ylnmgxqmyge”>https://youtu.be/ylnmgxqmyge<a>><p>supplementary–fluorphy bacters experiment<a href=“https://youtu.be/lgmtrys62pa”>https://youtu.be/lgmtrys62pa<a>><p>><p>><p>><p>><strong>><em>acknowledgements<em>><p>><p>agr was supported by an nserc subgraduary student research award and by an nserc发现补助金。EWT得到了自然与科学基金会和生物多样性科学中心的支持。新利手机客户端加拿大研究主席计划和NSERC发现拨款支持了AGO。DN得到了CFI领导人机会基金(25636)的支持,A Burroughs Wellcome Fund Cams Award(1006827.01)and A CIHR Salary Award.<P><P><P><strong><Em>References.<Em><strong><P>Cho,H.J·诺森,H.坎贝尔K.,MelkeP.威廉姆斯JW.JedynakB.,…列夫钦科,a.(2007)。高密度菌落的自我组织:有效的群体控制。<em>PLOS生物<EM>5</EM>(11);e302.<p>康奈尔,JL.,Ritschdorffe.T.WhiteleyM.剪切JB.(2013)。显微细菌群落的三维打印。<em>美国国家科学院院院刊新利手机客户端<em>110</em>(46),18380-18385.<p>Folkesson,A.JelsbakL.,杨L.,约翰森H.K.,CiofuO.哈比,N.莫林,S.(2012)。铜绿假单胞菌对囊性纤维化气道的适应:一个进化的观点。<em>自然评论。Microbiology</em>,<em>10</em>(12),841、</P> < P>f.J.德克尔C.(2014)。放大看看更大的画面:研究细菌的微流体和纳米制造工具。<em>新利手机客户端科学</em>,<em>346</em>(6208),1251821.<p><p>keymer,Je.加拉贾达P.LambertG.LiaoD奥斯丁R.H.(2008)。通过竞争细菌计算相互适应度。<em>美国国家科学院院院刊新利手机客户端<em>105</em>(51),20269-20273.<p><p>或,D斯密茨B.F.幽灵,JM.Dechesne,A.弗里德曼S.P.(2007)。不饱和多孔介质中影响细菌生境和活动的物理约束——综述。<em>水资源进展30(6),1505-1527.<p><p>公园,S.沃拉宁P.M.Yuzbashyane.A.SilberzanP.股票,JB.,奥斯丁R.H.(2003)。构成法定人数的动议。<em>新利手机客户端科学</em>,<em>301</em>(5630),188-188.<p>tekwa,e.W.NguyenD容克DLoreauM.冈萨雷斯a.(2015)。微生境芯片中的斑片状结构影响细菌合作的进化动态。<em>芯片上的实验室<em>15</em>(18),3723-3729.<p>tekwa,E.W.NguyenDLoreauM.冈萨雷斯a.缺陷菌群与病原菌的合作有关。<em>在评论中。<em><p><div class=“lightsocial_container”><a class=“lightsocial_a”href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2fRapid-Enocation-and-Recovery-of-Microfluidic-In-A-Microfluidic-Device%2f&title=Rapid+Enocation+and+Recovery+of+Microfluidic+In+A+Microfluidic+Device“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png”alt=“digg this”title=“此“/><a><a class=“lightsocial_a”href=“http://www.reddit.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2fRapid-Introduction-and-recovery-of-microfluidic-in-a-microfluidic-device%2f&title=rapid+innoduction+and+recovery+of+microfluidic+device“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/reddit.png”alt=“reddit this”title=“reddit this”/>.<a><a class=“lightsocial_a”href=“http://www.stumbleupon.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2fRapid-Inceulation-and-recovery-of-microfluidic-in-a-microfluidic-device%2f&title=rapid+inceulation+and+recovery+of+microfluidic+device“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/stumbleupon.png”alt=“Stumble Now!”title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?t=a+微流控+设备中+微生物的快速+接种+和+恢复+u=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2frapid-invention-and-recovery-of-microbiles-in-a-microfluidic-device%2f“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/facebook.png”alt=“在Facebook上分享”标题=“在Facebook上分享”/>=<a><a class=“lightsocial_a”href=“http://delicious.com/save”?title=a+微流体+设备中+微生物+的快速+接种+和+恢复+url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2frapid-invention-and-recovery-of-microbiles-in-a-microfluidic-device%2f“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png”alt=“将此添加到书签Delicious“title=”bookmark this on Delicious“/><a><a class=”lightsocial_a“href=”http://www.linkedin.com/shareArticle?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2fRapid-Inceulation-and-recovery-of-microfluidic-in-a-microfluidic-device%2f&title=rapid+inceulation+and+recovery+of+microfluidic+in+a+microfluidic+device&summary=&source=“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp content/plugins/light social/linkedin.png“alt=”share on linkedin“title=”share on linkedin“/><a><a class=”lightsocial_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2frapid-invoice-and-recovery-of-microbes-in-a-microfluidic-device%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png“alt=”bookmark this on technorati“title=”bookmark this on technorati“/><a><a class=”light社交网站a href=“http://twitter.com/home”?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2fRapid-Immuation-and-recovery-of-microfluidic-in-a-microfluidic-device%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/><a class=”light social“a”href=“http://www.google.com/buzz/post?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f10%2f04%2fRapid-Introduction-and-recovery-of-microbics-in-a-microfluidic-device%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png“alt=”google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2017/10/04/rapid-invention-and-recovery-of-microbes-in-a-microfluidic-device/feed/ 快速简便的玻璃培养皿制作,用于长期活细胞成像 //www.xcmww.com/chipsandtips/2017/07/25/manufacturing-of-glass-bottom-culture-dishes-for-long-live-cell-imaging/长期活体细胞成像/ //www.xcmww.com/chipsandtips/2017/07/25/制作玻璃底培养皿,用于长期活细胞成像/评论 星期二,2017年7月25日13:00:04+0000 RSC互联网服务 细胞 LOC //www.xcmww.com/chipsandtips/?P=2171 Yamada123号Ayako,Jean-Louis Viovy123,Catherine Villard123和St_phanie Descroix123 1实验室物理化学居里,Institut Curie,PSL研究大学,CNRS UMR168,巴黎,法国。2索邦大学,UMPC大学Paris 06,巴黎,法国皮埃尔·吉勒斯第三研究所,巴黎,法国邮箱:ayako.yamada@curie.fr为什么这有用?Glass is a versatile surface for chemical treatments,和[…] <p><span style=“font-size:8pt”>Ayako Yamada<sup>123<sup>,Jean-Louis Viovy<sup>123<sup>,Catherine Villard<sup>123<sup>and st_phanie Descroix<sup>123<sup><span><p><span style=“font-size:8pt”><sup>1</sup>Laboratoire Physico Chimie居里,Institut Curie,PSL研究大学,CNRS UMR168,巴黎,法国。<span><p><span style=“font-size:8pt”><sup>2</sup>Sorbonne Universit_s,UMPC大学Paris 06,巴黎,法国巴黎,法国</span><p><span style=“font-size:8pt”>email:ayako.yamada@curie.fr</span><p><p><p><strong>why is this used?<p>Glass is a variable surface for chemical treatments,玻璃是用于化学处理的多功能表面,它仍然是迄今为止最常用的表面工程基板(例如微关注,PDMS微流体装新利手机客户端置的表面化学)或等离子键合。在这种基质上进行细胞培养,玻璃底培养皿是为了保持细胞外明确的培养基体积,and to protect the cells from contamination and medium evaporation.此外,它们在光学上比通常用于细胞培养的聚苯乙烯培养皿更适合显微镜观察。尽管市场上有玻璃底培养皿(例如来自WPI的荧光皿)塑料墙的存在限制了可以在玻璃底面上进行的处理,而那些处理更昂贵(每盘5欧元;φ50 mm)比聚苯乙烯盘子(例如来自TPP的φ40 mm盘,每盘0.5欧元)。In this Tip,我们描述了一种比之前的提示更简单的方法,将聚苯乙烯培养皿转化为玻璃底培养皿,同时保留了在玻璃装配成盘子之前对其进行任何处理的可能性。注意,在这种方法中,培养皿的主体将被倒置,因此盖子不再被盖子塞子提升到盘子开口的上方。然而,通过身体和盖子之间的缝隙进行的气体交换似乎足以在这道菜中健康地培养细胞。综上所述,本发明提供了一种在微流体装置中或直接在培养皿中的工程表面上进行细胞培养的低成本快速解决方案。适合于长期的活细胞成像。<p><p><p><hr/><p><strong>What do I need?<strong><p><ul><li>φ40 mm聚苯乙烯组织培养皿(e.g.tpp 93040)<li><li>φ40 mm cover slide(e.g.Thermo Fisher Scientific #11757065,0.2_€per slide).<li><li>large screw driver(or a similar tool).<li><li>uncurred mixture of pdms base and固化剂(10:1 w/w).<li><li>oven or hotplate.<li><li>铁磁金属板(e.g.PDMS容器盖,可选)<li><li>圆柱形磁铁(可选)<li><ul><p><p><hr/><p><strong>what do i do?<strong><p><ol><li>place a polyses culture dish upside down on a surface and hit a times the center of the dish bottom with the grip of a large screw driver(Fig.1a)直到盘底脱离盘壁(图1b)。成功率在9%到10%之间时,底部应该容易下降。避免用力敲打底部而破坏盘壁。<li><li>将未固化的PDMS混合物摊铺在平坦的基板上(例如一个较大的塑料培养皿),并在培养皿边缘(破碎部分)涂上PDMS(图1c).<li><li>place the dish(breaked part up)on a cover glass slide(Fig.1d)在烤箱或加热板上固化PDMS。在80°C下保持10分钟(图1e).<li><li>Surface treatment(e.g.微接触印刷)或PDMS芯片与玻璃表面的等离子粘合可以在碟片组装之后或之前进行(图1f).<li><ol><p><a href=“//www.xcmww.com/chipsandtips/files/2017/07/fig1.jpg”><img class=“AlignCenter wp-image-2174”src=“//www.xcmww.com/chipsandtips/files/2017/07/fig1-1024x571.jpg”alt=“”width=“599”height=“334”srcset=“//www.xcmww.com/chipsandtips/files/2017/07/fig1-1024x571.jpg 1024W,//www.xcmww.com/chipsandtips/files/2017/07/fig1-300x167.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/07/fig1-768x428.jpg 768w,//www.xcmww.com/chipsandtips/files/2017/07/fig1.jpg 1430w“尺寸=”(最大宽度:599px)100vw,599px“/>.<a><p><ol start=“5”><li>to keep humidity for on-chip cell culture,the dish can be filled with e.g.磷酸盐缓冲盐水(图2a)。装有细胞的芯片或微型电池的盘子可以放置在CO<Sub>2<Sub>2b).<li><li>long term live cell imaging can be performed using a stage top funcator(fig.2c).<li><ol><p><a href=“//www.xcmww.com/chipsandtips/files/2017/07/fig2.jpg”><img class=“AlignCenter wp-image-2173”src=“//www.xcmww.com/chipsandtips/files/2017/07/fig2-1024x287.jpg”alt=“”width=“643”height=“181”srcset=“//www.xcmww.com/chipsandtips/files/2017/07/fig2-1024x287.jpg 1024W,//www.xcmww.com/chipsandtips/files/2017/07/fig2-300x84.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/07/fig2-768x215.jpg 768w,//www.xcmww.com/chipsandtips/files/2017/07/fig2.jpg 1429w“尺寸=”(最大宽度:643px)100vw,643px“/><a>><p>><p>><p>><p>><hr/><p>><strong>what else should i know?<strong><p><ol start=“7”><li>depending on the support type of microscopes,可能需要很好地对齐盘子和玻璃片的轮廓。这可以使用圆柱形磁铁(每盘3个)和铁磁金属板(图3a)在烤箱或加热板上进行PDMS固化时(图3b).<li><ol><p><strong><a href=“//www.xcmww.com/chipsandtips/files/2017/07/new-fig-3.jpg”><img class=“AlignCenter wp-image-2184”src=“//www.xcmww.com/chipsandtips/files/2017/07/new-fig-3-1024x284.jpg”alt=“”width=“637”height=“177”srcsset=“//www.xcmww.com/chipsandtips/files/2017/07/new-fig-3-1024x284.jpg 1024w,//www.xcmww.com/chipsandtips/files/2017/07/new-fig-3-300x83.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/07/new-fig-3-768x213.jpg 768w“size=”(最大宽度:637px)100vw,637px“/>.<a>.<strong><p><p><hr/><p><strong>Acknowledgement.<strong><p>this work is supported by the French National Research Agency(ANR)as part of the“investissements d'avenir”program(reference:anr 10-nano 0207)and erc advanced grant cello(fp7-ideas-erc-321107).<p><p><strong><strong><p><strong>reference.<strong><p><p>[1]卡巴列罗D,Samitier J为活体细胞成像研究制造细胞培养室的不同策略。薯条和小费,2014年12月2日url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2f制造用于长期活细胞成像的玻璃底部培养皿%2f&title=rapid+and+easy+manufacturing+of+glass bottom+culture+disks+for+long-term+live+cell+imaging“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png“alt=”digg this“title=”digg this“/><a>;<a class=”lightsocial_a“href=”http://www.reddit.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2f制造用于长期活细胞成像的玻璃底部培养皿%2f&title=rapid+and+easy+manufacturing+of+glass bottom+culture+disks+for+long-term+live+cell+imaging“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp content/plugins/light social/reddit.png“alt=”reddit this“title=”reddit this“/><a><a class=”lightsocial_a“href=”http://www.stumbleupon.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2f制造用于长期活细胞成像的玻璃底部培养皿%2f&title=rapid+and+easy+manufacturing+of+glass bottom+culture+disks+for+long-term+live+cell+imaging“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/stumbleupon.png“alt=”现在绊倒!title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?T=Rapid+and+Easy+Manufacturing+of+Glass Bottom+Culture+Disables+for+Long-Term+Live+Cell+Imaging&U=http%3a%2f%2fBlogs.rsc.org%2fChipsandTips%2f2017%2f07%2f25%2f制造用于长期Live Cell Imaging%2f“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/facebook.png”alt=“share on facebook”title=“share on facebook”/>.<a><a class=“lightsocial_a”href=“http://delicious.com/save”?title=rapid+and+easy+manufacturing+of+glass bottom+culture+diskes+for+long-term+live+cell+imaging&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2f制造用于长期活细胞成像的玻璃底部培养皿%2f“><img class=“light social\uimg”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png“alt=”bookmark this on delicious“title=”bookmark this on delicious“/><a><a class=”lightsocial_a“href=”http://www.linkedin.com/shareArticle?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2f长期活细胞成像用玻璃底部培养皿的制作%2f&title=rapid+and+easy+manufacturing+of+glass bottom+culture+dishes+for+long-term+live+cell+imaging&summary=&source=“><img class=“lightsocial_img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light social/linkedin.png“alt=”share on linkedin“title=”share on linkedin“/><a><a class=”light social_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2f为长期活细胞成像制作玻璃底部培养皿%2f“><img class=“light social_img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png”alt=“bookmark this on technorati”title=“bookmark this on technorati”/>=<a class=“lightsocial”href=“http://twitter.com/home?”status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2fficement of glass bottom culture diskets for long term live cell imaging%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/><a>><a class=”light social\u a“href=“http://www.google.com/buzz/post?”url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f07%2f25%2f为长期活细胞成像制作玻璃底培养皿%2f“><img class=“light social_img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png”alt=“google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2017/07/25/manufacturing-of-glass-bottom-culture-dishes-for-long-live-cell-imaging/feed/ 手动光罩对准多层光刻 //www.xcmww.com/chipsandtips/2017/06/05/multiple-photography-with-manual-photomask-alignment/ //www.xcmww.com/chipsandtips/2017/06/05/multiple photography with manual photomask alignment/评论 周一,2017年6月5日14:44:50+0000 RSC互联网服务 未分类 LOC //www.xcmww.com/chipsandtips/?P=2159 Frank Benesch Lee先生,若泽MLazaro GuevaraDirk R.阿尔布雷特伍斯特理工学院,Worcester马01609年美国为什么有用?现代微流控器件可以结合不同高度的通道来实现其设计功能。示例包括水动力聚焦[1],细胞陷阱[ 2 ],以及隔离细胞成分的腔体[3]。这些装置是由[…]制造的。 <p>Frank Benesch Lee先生,若泽MLazaro GuevaraDirk R.阿尔布雷希特,伍斯特理工学院,WorcesterMA 01609 USA<p><p><strong>为什么它有用?<strong><br/><code><code><br/>Modern Microfluidic Devices can incorporate channels of different heights to implement their designed function.示例包括水动力聚焦[1],细胞陷阱[ 2 ],以及隔离细胞成分的腔体[3]。这些器件是由多层SU-8光刻胶母模制成的。每层高度需要一组单独的光刻步骤,包括光刻胶旋转,光罩对准,exposure,烘焙,最后是一个开发步骤,以显示3D抗蚀剂图案。<p>Mask Aligners have microscopes and stage微米for precision,每层光罩的微米级校准,在基板晶圆上有可见的标记。它们是制作精确对准的多层图案必不可少的工具,但是在许多研究性大学的洁净室里,相比之下,他们的巨额开支可能使他们无法接触到教学机构和个别实验室。使用便宜的紫外线光源可以制备单层微流体。甚至是自制的。原则上,可以在显微镜下进行手动光罩校准,然后带到紫外线源,然而,这带来了一些复杂的情况。第一,使用便宜的显微镜或立体镜很难看到对准特征。especially in thin SU8 layers,due to poor contrast between exposed and unexposed regions before development.第二,在移动到曝光系统的过程中可能会发生错位。<p>这里,我们介绍了一种手动光罩定位方法,其精度为50微米,没有面罩校准器的帮助。<p><p>.<p><p><strong>What do I need?<strong><p><ul><li>Equipment and Supplies for photography:<ul><li>Spin Coater,和紫外线曝光系统USB)或立体显微镜</li><li>photomask transparences for each layer.<li><li>scotch tape.<li><li>fine tip permanent marker.<li><li>Straight Razor Blade.<li>Cutting Mat.<li>4 small(3/4”)or mini(1/2”)binder clips.<li><li>glass plate,大约。4×5“,与曝光系统兼容<strong>><p>><table>><tbody>><tr>><td width=“403”>><td>><tr>><td>><td>><td>><td>><tr>><tbody>><table>><ul>><li>cut the photomasks from the transparency sheet,留下4个角标签。在显微镜下将两个掩模相对对齐(图1a),并用活页夹将它们夹在一起。确保正确的蒙版方向,并检查蒙版上多个对准标记的对准精度。(<em>请注意,使用立体显微镜的水平对准精度较低,because each eye's optical path is angled 5 – 8 degrees,而垂直对齐不受影响。首先沿垂直方向对齐,然后将遮罩旋转90度,以确保在水平和垂直方向都准确对齐。<em>)向每个角添加活页夹(图1b)。并确认对准。下一步,一次取下一个活页夹,用直的刀片在每个卡舌上切一个锋利的V形缺口,通过两个面具。将刀片垂直向下压,以避免移动对中。更换活页夹,然后继续下一个拐角,直到所有4个切口都被切割(图1c)。<li>><ul>><p>><p>><p>><p>><p>><a href=“//www.xcmww.com/chipsandtips/files/2017/06/fig1.jpg”><img class=“AlignCenter wp-image-2163”src=“//www.xcmww.com/chipsandtips/files/2017/06/fig1.jpg”alt=“”width=“764”height=“325”srcsset=“//www.xcmww.com/chipsandtips/fileS/2017/06/图1.JPG 999W,//www.xcmww.com/chipsandtips/files/2017/06/fig1-300x128.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/06/fig1-768x327.jpg 768w“尺寸=”(最大宽度:764px)100vw,764px“/>.<a><p><p>.<p><p>.<p><ol start=“2”><li>spin the first layer of su-8 onto the wafer to the desired thickness and prebake.在晶圆底部贴上4片透明胶带,使粘边朝上(图2a)。把第一个掩模放在晶片上,轻轻按压以将其粘到胶带卡舌上。使用细尖标记将对准缺口(图2b)追踪到透明胶带(图2c)上。转移到紫外线曝光系统并曝光。小心地移除掩模,而不将透明胶带从晶圆上拆下并烘烤后。透明胶带与95°C烘烤兼容。使用另一条胶带覆盖胶带Tabs保护标记不受污染,并允许下一个蒙版的平滑对齐。<li>><ol>><p>><p>><p>><p>><p>><a href=“//www.xcmww.com/chipsandtips/files/2017/06/fig2.jpg”><img class=“AlignCenter wp-image-2162”src=“//www.xcmww.com/chipsandtips/files/2017/06/fig2.jpg”alt=“”width=“775”height=“307”srcset=“//www.xcmww.com/chipsandtips/files/2017/06/fig2.jpg 1012W,//www.xcmww.com/chipsandtips/files/2017/06/fig2-300x119.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/06/fig2-768x304.jpg 768w“size=”(最大宽度:775px)100vw,775px“/>.<a><p><p>.<p><ol start=“3”><li>spin coat the next photoresist layer and prebake(Figure 3a).用一圈透明胶带将晶圆贴在玻璃板上,使其保持原位。将第二个掩模放置在晶圆上,确保对齐“V”标记在每个对齐槽口内居中,并穿过所有4个角(图3b)。用薄(2-3 mm宽)胶带将面罩粘到玻璃板上,并根据需要调整对齐。小心地将玻璃板与晶圆和对齐的光罩一起转移以进行曝光(图3c)。<li>><ol>><p>><p>><a href=“//www.xcmww.com/chipsandtips/files/2017/06/fig3.jpg”><img class=“AlignCenter wp-image-2161”src=“//www.xcmww.com/chipsandtips/files/2017/06/fig3.jpg”alt=“”width=“770”height=“311“srcset=”//www.xcmww.com/chipsandtips/files/2017/06/fig3.jpg 1006w,//www.xcmww.com/chipsandtips/files/2017/06/fig3-300x121.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/06/fig3-768x310.jpg 768w“尺寸=”(最大宽度:770px)100vw,770px“/><a>><p>><p>><p>><p>><ol start=“4”><li>repeat step 3 for any additional layers.取下胶带凸耳并显影光刻胶。在显微镜下评估校准精度(图4)。<li><ol><p><a href=“//www.xcmww.com/chipsandtips/files/2017/06/fig4.jpg”><img class=“AlignCenter wp-image-2160”src=“//www.xcmww.com/chipsandtips/files/2017/06/fig4.jpg”alt=“”width=“737”height=“356”srcset=“//www.xcmww.com/chipsandtips/files/2017/06/fig4.jpg 967w,//www.xcmww.com/chipsandtips/files/2017/06/fig4-300x146.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/06/fig4-768x372.jpg 768w“size=”(最大宽度:737px)100vw,737px" /></a></p><p> </p><p> </p><p><strong>Conclusions:</strong></p><p>In this tip,我们提出了一种手动校准多个透明光罩的方法。我们实现了<100微米和50微米的可重复精度(图4a)。这些精度在许多多层设计的要求公差范围内(图4b)。在许多情况下,较小的设计备选方案可以放宽对准公差,例如,在一个圈闭设计中,包含一个薄的水平通道,允许流体绕过,但捕获较大的物体(图4c)。在这个例子中,100μm宽的旁路通道仅部分覆盖陷阱缺口,然而,将旁路通道扩大到400μm,尽管有轻微的偏差,但仍能实现功能性设备。总体而言,这种简单的方法可以制造含有多层高度的微流体装置模具,没有昂贵的面具校准设备,精度至少为50μm。此外,切割对准标记后,在光刻过程中根本不需要显微镜,加速制造多个主控形状。<p><p>.<p><strong>Acknowledgments:<strong><br/>Funding provided by nsf igert dge 1144804(fbl),富布赖特·拉斯帕(JMLG)危地马拉圣卡洛斯大学(JMLG)NSF CBET 1605679(DRA)国家卫生研究院R01DC16058(DRA)和Burroughs Wellcome-Casi(DRA)。<strong>Acknowledgments:<strong><p><p>.<p><strong>References:<strong><p><ol><li>chih-chang,C.H.支雄Y.Ruey Jen<em>二维聚二甲基硅氧烷(PDMS)微通道中的三维水动力聚焦研究。<em>Journal of Micromechanics and Microengineering,2007。<strong>17<strong>(8):p.1479.<li>埃里克森,J.等,<em>笼状神经元MEA:培养的神经网络连接的长期研究系统。<em>Journal of Neuroscience Methods,新利手机客户端2008.<strong>175<strong>(1):p.1-16.<li><li>Taylor,a.M.等,<em>中枢神经轴索损伤的微流体培养平台,再生和运输。——em>自然方法,2005。<strong>2<strong>(8):p.599-605.<li><li>Erickstad,M.e.古铁雷斯A.Groisman<em>一种基于发光二极管的低成本低维护紫外光刻光源。<em>lab on a chip,2015。<strong>15<strong>(1):p.57-61.</li></ol><p> </p><div class="lightsocial_container"><a class="lightsocial_a" href="http://digg.com/submit?url=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F&title=Multilayer+photolithography+with+manual+photomask+alignment" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/digg.png" alt="Digg This" title="Digg This" /></a>  <a class="lightsocial_a" href="http://www.reddit.com/submit?url=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F&title=Multilayer+photolithography+with+manual+photomask+alignment" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/reddit.png" alt="Reddit This" title="Reddit This" /></a>  <a class="lightsocial_a" href="http://www.stumbleupon.com/submit?url=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F&title=Multilayer+photolithography+with+manual+photomask+alignment" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/stumbleupon.png" alt="Stumble Now!" title="Stumble Now!" /></a>  <a class="lightsocial_a" href="http://www.facebook.com/sharer.php?t=Multilayer+photolithography+with+manual+photomask+alignment&u=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/facebook.png" alt="Share on Facebook" title="Share on Facebook" /></a>  <a class="lightsocial_a" href="http://delicious.com/save?title=Multilayer+photolithography+with+manual+photomask+alignment&url=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/delicious.png" alt="Bookmark this on Delicious" title="Bookmark this on Delicious" /></a>  <a class="lightsocial_a" href="http://www.linkedin.com/shareArticle?mini=true&url=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F&title=Multilayer+photolithography+with+manual+photomask+alignment&summary=&source=" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/linkedin.png" alt="Share on LinkedIn" title="Share on LinkedIn" /></a>  <a class="lightsocial_a" href="http://www.technorati.com/faves?add=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png" alt="Bookmark this on Technorati" title="Bookmark this on Technorati" /></a>  <a class="lightsocial_a" href="http://twitter.com/home?status=Reading+http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png" alt="Post on Twitter" title="Post on Twitter" /></a>  <a class="lightsocial_a" href="http://www.google.com/buzz/post?url=http%3A%2F%2Fwww.xcmww.com%2Fchipsandtips%2F2017%2F06%2F05%2Fmultilayer-photolithography-with-manual-photomask-alignment%2F" ><img class="lightsocial_img" src="//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google_buzz.png" alt="Google Buzz (aka.google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2017/06/05/multiple-photography-with-manual-photomask-alignment/feed/ 一个简单的,无泡细胞加载技术在芯片实验装置上培养哺乳动物细胞 //www.xcmww.com/chipsandtips/2017/02/28/a-simple-bubble-free-cell-loading-technology-for-culting-mamilanian-cells-on-lab-on-a-chip-devices/ //www.xcmww.com/chipsandtips/2017/02/28/a-simple-bubble-free-cell-loading-technology-for-culting-mamilanian-cells-on-lab-on-a-chip-devices/评论 星期二,2017年2月28日16:02:25+0000 RSC互联网服务 细胞 制作 LOC //www.xcmww.com/chipsandtips/?P=2152 Sahl Sadeghi1…*和Meltem Elitas1工程与自然科学学院,新利手机客户端萨班奇大学34956,伊斯坦布尔土耳其萨赫萨德吉写了这篇论文。目的:实验室芯片(loc)设备对不同的科学学科有着重要的贡献。新利手机客户端聚二甲基硅氧烷(PDMS)是主要材料之一。广泛用于制造生物基因座,由于它的[…] <p>sahl sadeghi<sup>1…**sup>and meltem elitas<sup>1</sup><p><sup>1</sup>faculty of engineering and natural science新利手机客户端s,萨班奇大学34956,伊斯坦布尔土耳其</p><p><em><sup>*<sup>sahl sadeghi written the paper</em><p></p><p><strong><u>purpose<u><strong><p>lab-on-a-chip(loc)devices significantly contribute different sciences of science.新利手机客户端聚二甲基硅氧烷(PDMS)是主要材料之一。广泛用于制造生物基因座,由于其生物相容性和易用性。然而,PDMS和其他一些聚合物材料本质上是防水材料(或疏水材料)。这导致装载和操作机车困难。在生物系统中,疏水性的显著后果是微流体通道中的气泡被截留。虽然PDMS的氧等离子体处理在一定时间内降低了表面疏水性,pdms的亲水性随着时间的推移而消失<a href=“u enref_1”><sup>1</sup>。微流体中气泡的持续问题导致了为克服它而进行的几项研究。其中一些解决方案建议实施气泡捕集器<a href=“u enref_2”><sup>2</sup><a><sup>,<sup><a href=“u enref_3”><sup>3</sup><a>,通过亲水涂层对locs进行表面处理并且使用主动控制的气泡去除系统<a href=“u enref_5”><sup>5</sup><a><sup>,<sup><a href=“u enref_6”><sup>6</sup><a>,虽然前面提到的设计复杂性被引入locs in order to reduce the blockling problem caused by the bubbles,这些修改也会导致更高的生产成本,复杂的操作,设备准备时间长。在许多单细胞实验中,没有丢失或损坏稀有细胞,这些细胞需要被导入LOC。Here,我们提供了一种简单方法,该方法能够在不引入微流体通道中气泡的情况下加载少量的细胞,而不引入微流体通道中的气泡。<p><HR/><p><强><U>材料<U>><强><p><表><tbboy><tr><td宽度=“222“>·;PDMS<td><td<td宽度=“302“>(道康宁西尔加德184硅弹性体工具包)<td><td>><tr><tr><td<<<<<<<<P><P>>160(二)吸液管尖端</td><td width=“302”>(20-200 ul,埃彭多夫# 3120000917)</td></tr><tr><td width="222">·         Pipetman</td><td width="302">(Gilson,P200#69989-5)<td>><tr>><td width=“222”>···························································新利手机客户端··················泛生物技术#p04-01548)<td>><tr>><td width=“222”>················································atcc-htb-22)<td>><tr>><td width=“222”>·················································鲁尔洛克小费,#300912)<td>><tr>><td width=“222”>···············································100 UL SIR,#84884)<td><tr><tbody><table><p><p><hr/><p><strong><u>procedure.<u><strong><p><strong>step 1:<strong>insert two 200 ul pipet tips at the inlet and outlet ports of the pdms device as illustrated in<strong>figure 1.<strong><p><p><strong>step 2:<strong>instroduct a 70%aqueous ethanol into the inlet pipet tip using a pipetman.因此,微流体通道的内表面将被消毒,并且流体流量将在微通道内进行测试,因为它在许多其他locs协议中被应用<a href=“u enref_7”><sup>7.<sup><a><sup>,<sup><a href=“u enref_8”>溶液流过PDMS装置的微通道和微腔。注意避免从出口管端施加负压,可能通过管道连接造成空气泄漏。此外,根据亨利定律,施加负压将直接影响溶解在液体中的气体量,这可能有助于在微通道内形成更多气泡。正压有助于通过溶解气泡去除气泡。<p><p><strong>步骤4:<strong>在用乙醇溶液冲洗芯片之后,检查芯片以确保去除气泡。如果有气泡,重复步骤2和3。<p><p><strong>step 5:<strong>fill the injector(10 ml)with medium or phosphate buffered saline(pbs).注意清除注射器内的气泡,安装并锁定注射器上的针头。然后,将介质流过针,确保针中充满介质,没有任何气泡。将针插入进液管尖端;轻轻地施加正压,用介质代替乙醇。下一步,collect the excess medium from the outlet-pipet tip.</p><p><strong>Step 6:</strong> Fill the inlet pipet with fresh medium in such a way that due to certain height (h) between the levels of the medium in the inlet and outlet pipet tips,微通道内将建立非常慢的介质流。<p><p><strong>步骤7:<strong>将您的细胞加载到Hamilton注射器中,并小心确保其针和注射器内没有气泡。如步骤5所述,将汉密尔顿注射器的针头插入进液管尖端,<strong>图1<strong>。通过向注射器施加温和的正压来引入细胞。PDMS芯片中建立的流将把释放的单元传送到芯片中所需的位置。流量可通过调节施加的正压力和进出口管尖收集的介质量来调节。可以收集出口管端多余的上清液,在实验期间,新鲜介质可以通过入口管端供应。<p><hr/><p><strong><u>references<u><strong><p><ol><li>tan,S.H.N.T.NguyenY.C.ChuaT.G.Kang,<em>生物微流体,2010。<strong>4<strong>(3).<li><li>zheng,W.F.Z.王WZhang,X.Y.Jiang,<em><em><em>lab on a chip<em>,2010。<strong>10<strong>(21):p.2906-2910.<li><li>wang,Y.,d.李,洛杉矶Zhang,H.JeonJ.E.Mendoza EliasT.A.Harvat,S.Z.哈桑a.周D.T.爱丁顿and J.Oberholzer<em><em><em>Biomedical Microdevices<em>,2012。<strong>14<strong>(2):p.419-426.<li><li>wang,Y.L.C.E.模拟人生和N.LAllbritton,<em>在芯片上的实验室2012。<strong>12<strong>(17):p.3036-3039.<li><li>Karlsson,J.M.M盖曾S.LaaksoTHaraldssonS.Malhotra KumarM梅基,H.古森斯W.van der wijngaart,<em>,<em><em>lab on a chip<em>,2013.<strong>13<strong>(22):p.4366-4373.<li><li>cortes,D.F.T.X.唐D.G.S.卡佩卢托I.M.Lazar,<em><em><em>传感器和执行器b:chemical<em>,2017。<strong>243<strong>:p.650-657.<li><li>benavente babace,A.d.Gallego PerezD.J.HansfordS.Arana,e.Perez LorenzoM.Mujika,<em><em><em>BioSensors&BioElectronics<em>,2014。<strong>61<strong>:p.298-305.<li><li>yesilkoy,F.R.UenoB.X.E.DesbiollesMGrisi是的。HB.J基姆,and J.Brugger,<em><em><em>biomicrofluidics,<em>2016.<strong>10</strong>(1).</li><li>Henry,W.Phil。反式R.SOC。朗德</EM>1803。<strong>93</strong>: 29–274.</li></ol><div id="attachment_2154" style="width: 460px" class="wp-caption aligncenter"><a href="//www.xcmww.com/chipsandtips/files/2017/02/ct-fig1.png.jpg"><img class="wp-image-2154 size-large" src="//www.xcmww.com/chipsandtips/files/2017/02/ct-fig1.png-1024x828.jpg" width="450" height="364" srcset="//www.xcmww.com/chipsandtips/files/2017/02/ct-fig1.png-1024x828.jpg 1024w,//www.xcmww.com/chipsandtips/files/2017/02/ct-fig1.png-300x243.jpg 300W,//www.xcmww.com/chipsandtips/files/2017/02/ct-fig1.png-768x621.jpg 768W“尺寸=”(最大宽度:450px)100vw,450px“/><a><p class=“wp caption text”>Figure 1–Schematic of cell loading procedure in a microfluidic pdms device.<p><div><p><p><p><p><div class=“lightsocial\u container”><a class=“lightsocial\u a”href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culting-mammalian-cells-on-lab-on-a-chip-devices%2f&title=a+simple%2c+bubble-free+cell+loading+technology+for+culting+mammalian+cells+on+lab-on-a-chip+devices“><img class=“lightsocial”src=“//www.xcmww.com/chipsandtips/wpcontent/plugins/light social/digg.png“alt=”digg this“title=”digg this“/><a><a class=”light social_a“href=”http://www.reddit.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culting-mammalian-cells-on-lab-on-a-chip-devices%2f&title=a+simple%2c+bubble-free+cell+loading+technology+for+culting+mammalian+cells+on+lab-on-a-chip+devices“><img class=“lightsocial”src=“//www.xcmww.com/chipsandtips/wpontent/plugins/light social/reddit.png“alt=”reddit this“title=”reddit this“/><a><a class=”light social_a“href=”http://www.stumbleupon.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culting-mammalian-cells-on-lab-on-a-chip-devices%2f&title=a+simple%2c+bubble-free+cell+loading+technology+for+culting+mammalian+cells+on+lab-on-a-chip+devices“><img class=“lightsocial”src=“//www.xcmww.com/chipsandtips/wpontent/plugins/light social/Stumbleupon.png“alt=”StumbleNow!“title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?t=a+simple%2c+bubble-free+cell+loading+technology+for+culting+mammalian+cells+on+lab-on-a-chip+devices&u=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culting-mammalian-cells-on-lab-on-a-chip-devices%2f“><img class=“lightsocial-img”src=“//www.xcmww.com/chipsandtips/w/plugins/light social/facebook.png“alt=”share on facebook“title=”share on facebook“/><a><a class=”light social_a“href=”http://delicious.com/save?title=a+简单%2c+无气泡+细胞+加载+技术+用于+培养+哺乳动物+细胞+on+lab-on-a-chip+设备&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culting-mammalian-cells-on-lab-on-a-chip-devices%2f“><img class=“lightsocial-img”src=“//www.xcmww.com/chipsandtips/wp-c”content/plugins/light social/delicious.png“alt=”bookmark this on delicious“title=”bookmark this on delicious“/><a><a class=”light social_a“href=”http://www.linkedin.com/sharearticle?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culturing-mailyman-cells-on-lab-on-chip-devices%2f&title=a+simple%2c+bubble-free+cell+loading+technology+for+culturing+mailyman+cells+on+lab-on-a-chip+devices&summary=&source=“><img class=“lightsocial\img”srcs.rsc.org/chipsandtips/wp content/plugins/light social/linkedin.png“alt=”share on linkedin“title=”share on linkedin“/><a><a class=”light social_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culturing-mammalian-cells-on-lab-on-a-chip-devices%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png“alt=”bookmark this on technorati“title=”bookmark this on technoraRati“/>.<a><a class=“lightsocial_a”href=“http://twitter.com/home”?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culting-mammalian-cells-on-lab-on-a-chip-devices%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/>.<a>><a class=“lightsocial_a”href=“http://www.google.com/buzz/post”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f28%2fa-simple-bubble-free-cell-loading-technology-for-culting-mammalian-cells-on-lab-on-a-chip-devices%2f“><img class=“light social\u img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google-buzz.png”alt=“google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2017/02/28/a-simple-bubble-free-cell-loading-technology-for-culting-mamilanian-cells-on-lab-on-a-chip-devices/feed/ A novel low cost method to prepare a cross-linked gelatin membrane for potential biological applications //www.xcmww.com/chipsandtips/2017/02/01/a-novel-low-cost-method-to-prepare-a-cross-linked-ag胶-film-for-potential-biological-applications/ //www.xcmww.com/chipsandtips/2017/02/01/a-novel-low-cost-method-to-prepare-a-cross-linked-glise-film-for-potential-biological-applications/评论 结婚,2017年2月1日12:40:37+0000 RSC互联网服务 细胞 LOC //www.xcmww.com/chipsandtips/?P=2137 Gabriele Pitingolo1和Valerie Taly1 1 Inserm UMRS1147,CNRS SNC 5014,巴黎笛卡尔大学,2016年法国国家癌症控制设备。巴黎,法国。电子邮箱:gabriele.pitingolo@parisdescartes.fr为什么有用?近年来,几种明胶类型(即GelMAa或b)因其优异的性能而被用于药物制剂和组织工程中。 <p>Gabriele Pitingolo<sup>1<sup>and Valerie Taly<sup>1<sup>><p>><sup>><sup>><sup>><sup>1<sup>inserm umrs1147,CNRS SNC 5014,巴黎笛卡尔大学,2016年法国国家癌症控制设备。巴黎,法国。<p><p>电子邮件:<a href=“mailto:gabriele.pitingolo@parisdescartes.fr”>gabriele.pitingolo@parisdescartes.fr.<p><p><p><strong>why is this useful?在最近几年中,几种明胶类型(即GelMAa或b)因其良好的生物相容性而被用于药物制剂和组织工程,低成本下细胞分化和可用性的倾向。<sup>1<sup>使用明胶作为生物材料也有利于调整基质的机械性能,改变水的浓度和交联度。然而,Transwell是最常用的具有微孔膜的渗透性支持物,是培养细胞的标准方法。<sup>2<sup>This commercial type of support has been generally used to study the molecular secretation by different cell types and also to reprodute several<em>in virtual</em>physical barriers(i.e.血脑屏障)。<sup>3<sup>transwell<sup>?<sup>cell culture inserts are simply,因为它们是无菌的,易于使用,但是它们非常昂贵(每12包大约300美元),而且由于它们是由聚酯或聚碳酸酯制成,因此生物材料的性能范围有限。此外,正如法兰加和他的同事所展示的,这些多孔膜通常集成到微流控芯片上进行渗透性研究。<sup>4<sup><p>recently,勇XChen et al.提出了一种制备细胞培养用悬浮水凝胶膜平台的替代方法,designing a complicated protocol to synthesize the GelMA and to fabricate an open-grid structure made of polylactic acid (PLA) polymer using a commercial printer.<sup>5</sup> Our tip shows a novel low-cost method for preparing a cross-liked gelatin membrane as a permeable support useful for potential biological applications.此外,提议的方案不需要使用复杂的制造技术或昂贵的材料。它使用来自猪皮肤的明胶和甲醛蒸气技术交联明胶膜。作为概念证明,我们将明胶膜集成到微流控芯片中,为了展示在静态和动态条件下开发可比较研究平台的可能性。<p>此外,为了证明制备的明胶膜对培养温度(约37°C)的抗性,we tested the mechanical properties (Young's modulus) before and after the incubation time (2 days).最后,我们观察到了使膜可用于细胞培养研究的机械性能和结构完整性的保存。<p><hr/><p>.<p><p><strong>What do I need?<strong><p><ul><li>transwell insert</li><li>porcine agreement type a</li><li>甲醛溶液</li><li>手术刀</li><li>pmma milled chamber or similar</li><ul><hr/><p><p><strong>what do i do?从Transwell中取出多孔膜或者使用类似的自制支架。为了方便这一步,可以方便地使用解剖刀沿整个直径切割薄膜。.<li><ol><p><a href=“//www.xcmww.com/chipsandtips/files/2017/02/ct1.jpg”><img class=“AlignCenter wp-image-2138”src=“//www.xcmww.com/chipsandtips/files/2017/02/ct1-1024x431.jpg”alt=“”width=“598”height=“251”srcset=“http://blogs.rsc”.org/chipsandtips/files/2017/02/ct1-1024x431.jpg 1024w,//www.xcmww.com/chipsandtips/files/2017/02/ct1-300x126.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/02/ct1-768x323.jpg 768w,//www.xcmww.com/chipsandtips/files/2017/02/ct1.jpg 1444w“尺寸=”(最大宽度:598px)100vw,598px“/>.<a><p><p>.<p><ol start=“2”><li>after the removal of the film,Transwell®支持随时可用。将结构放置在PMMA室的中心(深度至少为2 mm)(图2a),并倒入10%w/v明胶,没有气泡,进入PMMA室,在Transwell<sup>>内(图2b)。稳定2分钟后,把系统放在冰箱里,至少10分钟。<li>><ol>><p>><a href=“//www.xcmww.com/chipsandtips/files/2017/02/ct2.jpg”><img class=“AlignCenter wp-image-2139”src=“//www.xcmww.com/chipsandtips/files/2017/02/ct2-1024x432.jpg”alt=“”width=“611”height=“258”srcset=“//www.xcmww.com/chipsandtips/files/2017/02/ct2-1024x432.jpg 1024w,//www.xcmww.com/chipsandtips/files/2017/02/ct2-300x126.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/02/ct2-768x324.jpg 768w,//www.xcmww.com/chipsandtips/files/2017/02/ct2.jpg 1445w“尺寸=”(最大宽度:611px)100vw,611px“/>.<a><p><p>.<p><ol start=“3”><li>after the gelation time(10 minutes at 4°C)it is possible to remove the formed agree film from the PMMA chamber,借助手术刀帮助分离(图3a-3b)。如图3c所示,明胶膜看起来非常平坦,细胞培养的理想特性(图3c)。为了保证细胞培养过程中机械性能的保持,使用经典方案“细胞生物相容性”交叉连接明胶膜,such as glyceraldehyde<sup>6</sup>,甲醛<sup>7<sup>和戊二醛<sup>8<sup>methods or natural products such as genipin.<sup>9<sup><li><p><a href=“//www.xcmww.com/chipsandtips/files/2017/02/ct3.jpg”><img class=“AlignCenter wp-image-2140”src=“//www.xcmww.com/chipsandtips/files/2017/02/ct3-1024x430.jpg”alt=“”width=“619”height=“260”srcset=“//www.xcmww.com/chipsandtips/files/2017/02/ct3-1024x430.jpg 1024w,//www.xcmww.com/chipsandtips/files/2017/02/ct3-300x126.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/02/ct3-768x323.jpg 768w,//www.xcmww.com/chipsandtips/files/2017/02/ct3.jpg 1444w“尺寸=”(最大宽度:619px)100vw,619px" /></a></p><p> </p><ol start="4"><li>In this case,采用气相甲醛法将制备的明胶膜交联,得到水溶性较低的体系。更高的机械强度和抗酶降解的稳定性。我们将明胶膜暴露在甲醛蒸气中1天。在图4a中,我们显示了差异,after 48 h of culture conditions,在样本交叉链接(左)和非(右)之间。The final depth of the cross-linked gelatin membrane is around 1 mm,然而,可以改变深度,调整液体明胶量。最后,我们计算,潜伏期前后,交联明胶膜的杨氏模量,观察40千帕的类似值(使用液压测试系统instron dx进行压缩测试)。<li>><ol><p><a href=“//www.xcmww.com/chipsandtips/files/2017/02/ct4.jpg”><img class=“AlignCenter wp-image-2141”src=“//www.xcmww.com/chipsandtips/files/2017/02/ct4-1024x295.jpg”alt=“”width=“731”height=“210”srcset=“//www.xcmww.com”/chipsandtips/files/2017/02/ct4-1024x295.JPG 1024W,//www.xcmww.com/chipsandtips/files/2017/02/ct4-300x86.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/02/ct4-768x221.jpg 768w,//www.xcmww.com/chipsandtips/files/2017/02/ct4.jpg 1067w“尺寸=”(最大宽度:731px)100vw,731px“/>.<a><p><p>.<p><ol start=“5”><li>integration of the agreement film into a microchip.在本节中,we detail the integration of the gelatin membrane into a microfluidic chip.例如,我们使用了之前工作中提出的相同几何体制作渗透性实验装置(图5a)。如图5b所示,just pour the liquid gelatin into the smaller drilled microchannel,用移液管形成一层均匀的薄层明胶(图5C)。在4°C下胶凝后,使用上述方法将形成的明胶膜交联,结果如图5d所示。为了将不同的PMMA-PDMS基板结合起来,我们在此提出了一种最近由我们的小组开发的磁性方法。在溶剂蒸发和等离子结合的情况下,通过物理化学应力来保护明胶膜。图5e显示了最终的芯片。<li>><ol>><p>><a href=“//www.xcmww.com/chipsandtips/files/2017/02/ct5.jpg”><img class=“AlignCenter wp-image-2142”src=“//www.xcmww.com/chipsandtips/files/2017/02/ct5-1024x619.jpg”alt=“”width=“759”height=“459”srcset=“//www.xcmww.com/chipsandtips/files/2017/02/ct5-1024x619.jpg 1024W,//www.xcmww.com/chipsandtips/files/2017/02/ct5-300x181.jpg 300w,//www.xcmww.com/chipsandtips/files/2017/02/ct5-768x464.jpg 768w,//www.xcmww.com/chipsandtips/files/2017/02/ct5.jpg 1408w“尺寸=”(最大宽度:759px)100vw,759px“/>.<a><p><p>.<p><p>.<p><hr/><p><strong>conclusions:<strong>in this tip,采用一种简单、低成本的制备方法制备了一种新型生物相容性明胶渗透载体。Vapor formaldehyde method or other chemical crosslinking approach can be applied to crosslink the integrated gelatin membrane for the use as potential scaffolds for cell culture.此外,通过改变明胶的初始浓度,可以调节渗透膜的杨氏模量和厚度。the degree of cross linking and the amount of liquid gelatin.最后,我们展示了明胶膜与模块化微芯片的集成。因此,我们提出了一种简单而低成本的方法来制备细胞生物学和其他应用的渗透明胶膜。<p><p><p><p><p><strong>acknowledgements<strong><p><p>this work was carried out with the support of the pierre gilles de gennes institute equipment(“investissements d'avenir”program,参考:ANR 10-nano 0207).<p><p>.<p><p><strong>references.<strong><p><ol><li>geckil,Hikmet等。“工程水凝胶作为细胞外基质模拟。”Nanomedicine 5.3(2010):469-484.<li><li><a href=“https://www.corning.com/worldwide/en/products/life sciences/products/pervatives supports/tran新利手机客户端swell guidelines.html“>https://www.corning.com/worldwide/en/products/life sciences/products/pervatives supports/transwell guidelines.html.<a>><li>g乌尼埃里达妮埃拉等。“穿梭介导的纳米颗粒输送到血脑屏障。”small 9.6(2013):853-862.<li>falanga,a.P.皮婷噢咯G.塞伦塔诺M.CosentinoA.梅隆P.VecchioneR.NETTI,P.a.(2016)。Shuttle‐mediated nanoparticle transport across an in vitro brain endothelium under flow conditions.生物技术与生物工程Yong X.等。“用于细胞培养的新型悬浮水凝胶膜平台”,《工程与医学纳米技术杂志》6.2(2015):021002.<li>sisson,克里斯廷等。“电纺明胶交联方法对细胞生长和活力的评估。”生物大分子10.7(2009):1675-1680.<li>USTA,M.等。“整齐和填充明胶的行为和特性。”Biomaterials 24.1(2003):165-172.<li>talebian,A.等。“戊二醛对明胶薄膜性能的影响。”Kemija U Industriji 56.11(2007):537-541.<li>bigi,A.等。“通过与genipin交联来稳定明胶膜。”Biomaterials 23.24(2002):4827-4832.<li>pitingolo-gabriele,等。“模块化混合芯片的制造,以模拟流动条件下内皮内衬微血管。”《微观机械与微工程杂志》(接受的手稿).<li><ol><div class=“lightsocial”container“><a class=“lightsocial”a“href=“http://digg.com/submit”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-agraphy-film-for-potential-biological-applications%2f&title=a+novel+low+cost+method+to+prepare+a+cross-linked+agree+film+for+potential+biological+applications“><img class=“lightsocial-img”src=“http://blogs.rsc提示/wp content/plugins/light social/digg.png“alt=”digg this“title=”digg this“/><a><a class=”light social_a“href=”http://www.reddit.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-agraphy-film-for-potential-biological-applications%2f&title=a+novel+low+cost+method+to+prepare+a+cross-linked+agree+film+for+potential+biological+applications“><img class=“lightsocial-img”src=“http://blogs.rsc提示/wp content/plugins/light social/reddit.png“alt=”reddit this“title=”reddit this“/><a><a class=”light social_a“href=”http://www.stumbleupon.com/submit?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-agraphy-film-for-potential-biological-applications%2f&title=a+novel+low+cost+method+to+prepare+a+cross-linked+agree+film+for+potential+biological+applications“><img class=“lightsocial-img”src=“http://blogs.rsctips/wp content/plugins/light social/Stumbleupon.png“alt=”StumbleNow!“title=“现在绊倒!”/><a class=“lightsocial”href=“http://www.facebook.com/sharer.php”?t=a+novel+low+cost+method+to+prepare+a+交联+明胶+薄膜+for+potential+biological+applications&u=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-明胶-薄膜-for-potential-biological-applications%2f“><img class=“lightsocial-img”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light social/facebook.png“alt=”share on facebook“title=”share on facebook“/><a><a class=”light social_a“href=”http://delicious.com/save?title=a+novel+low+cost+method+to+prepare+a+交联+明胶+薄膜+for+potential+biological+applications&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-明胶-薄膜-for-potential-biological-applications%2f“><img class=“lightsocial-img”src=“//www.xcmww.com/chipsandtips/wp content/plugins/light social/delicious.png“alt=”bookmark this on delicious“title=”bookmark this on delicious“/><a><a class=”light social_a“href=”http://www.linkedin.com/shareArticle?mini=true&url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-agree-film-for-potential-biological-applications%2f&title=a+novel+low+cost+method+to+prepare+a+cross-linked+agree+film+for+potential+biological+applications&summary=“><img class=“lightsocial-img”srctp://www.xcmww.com/chipsandtips/wp-content/plugins/light-social/linkedin.png“alt=”share on linkedin“title=”share on linkedin“/><a><a class=”light social_a“href=”http://www.technorati.com/faves?add=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-ag胶-film-for-potential-biological-applications%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/technorati.png“alt=”bookmark this on technorati“title=”bookmark this on-technorati“/><a><a class=“lightsocial_a”href=“http://twitter.com/home”?status=reading+http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-ag胶-film-for-potential-biological-applications%2f“><img class=“light social”img“src=”//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/twitter.png“alt=”post on twitter“title=”post on twitter“/</a><a class=“lightsocial_a”href=“http://www.google.com/buzz/post”?url=http%3a%2f%2fwww.xcmww.com%2fchipsandtips%2f2017%2f02%2f01%2fa-novel-low-cost-method-to-prepare-a-cross-linked-ag胶-film-for-potential-biological-applications%2f“><img class=“light social”src=“//www.xcmww.com/chipsandtips/wp-content/plugins/light-social/google-buzz.png”alt=“google buzz(aka)。google reader)“title=”google buzz(aka.google reader)“/>.<a>.<div> //www.xcmww.com/chipsandtips/2017/02/01/a-novel-low-cost-method-to-prepare-a-cross-linked-gelatin-membrane-for-potential-biological-applications/feed/